Preferred Language
Articles
/
joe-295
Modified Grid Clustering Technique to Predict Heat Transfer Coefficient in a Duct of Arbitrary Cross Section Area
...Show More Authors

A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.

The method is utilized to predict Nusselt number distribution in a hybrid cross section area duct, non-circular non-rectangular, for laminar incompressible flow under Uniform Wall Temperature condition. The results have been compared with the published data and the agreement has been found very well.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 05 2020
Journal Name
Iop Conference Series: Materials Science And Engineering, Volume 1067
The effect of cyclic loading on the nonlinear response of structural concrete members with arbitrary cross-sectional shapes
...Show More Authors

View Publication
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Free Convective Heat Transfer with Different Sections Lengths Placed at the Exit of a Vertical Circular Tube subjected to a Constant Heat Flux
...Show More Authors

A free convective heat transfer from the inside surface of a uniformly heated vertical circular tube has been experimentally investigated under a constant wall heat flux boundary condition for laminar air flow in the ranges of RaL from 6.9108 to 5109. The effect of the different sections (restrictions) lengths placed at the exit of the heated tube on the surface temperature distribution, the local and average heat transfer coefficients were examined. The experimental apparatus consists of aluminum circular tube with 900 mm length and 30 mm inside diameter (L/D=30). The exit sections (restrictions) were included circular tubes having the same inside diameter as the heated tube but with different lengths of

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
Numerical Study of Fluid Flow and Heat Transfer Characteristics in Solid and Perforated Finned Heat Sinks Utilizing a Piezoelectric Fan
...Show More Authors

Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Estimation of Mass Transfer Coefficient for Copper Electrowinning Process
...Show More Authors

Mass transfer was examined at a stationary rectangular copper electrode (cathode) by using the reduction of cupric ions as the electrochemical reaction. The influence of electrolyte temperature (25, 45, and 65 oC), and cupric ions concentration (4, 8, and 12 mM) on mass transfer coefficient were investigated by using limiting current technique. The mass transfer coefficient and hence the Sherwood number was correlated as Sh =

 

View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Neuroquantology
Reaction Cross Section Variations of (alpha + 22Ne) in Msun<M<4Msun AGB Stars
...Show More Authors

Listed

Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on the Impact of External Geometrical Shape on Free and Forced Convection Time Dependent Average Heat Transfer Coefficient during Cooling Process
...Show More Authors

In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
...Show More Authors

View Publication
Scopus (275)
Crossref (281)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NATURAL CONVECTION HEAT TRANSFER IN AN INCLINED CIRCULAR CYLINDER
...Show More Authors

Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination .

View Publication Preview PDF
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
...Show More Authors

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Experimental Study on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling in a Microchannel
...Show More Authors

The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale p

... Show More
View Publication Preview PDF
Crossref (2)
Crossref