Preferred Language
Articles
/
joe-293
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback control system using PID controller to stabilize the fuel cell voltage. Particle swarm optimization technique is used to tune the PID controller gains. The voltage error and hydrogen flow rate are input and the actuator of the PID controller respectively. Simulation results showed that using PID controller with proposed model of fuel cell can successfully improve system performance in tracking output voltage under different operating conditions.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Apr 25 2013
Journal Name
Isprs International Journal Of Geo-information
Using Geometric Properties to Evaluate Possible Integration of Authoritative and Volunteered Geographic Information
...Show More Authors

The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und

... Show More
View Publication
Scopus (28)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Fri Oct 14 2022
Journal Name
المجلة العراقية لعلوم التربة
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Mon Mar 27 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Spectrophotometric Determination of Clonazepam in Pure and Dosage forms using Charge Transfer Reaction
...Show More Authors

A rapid, sensitive and without extraction spectrophotometric method for determination of clonazepam (CLO) in pure and pharmaceutical dosage forms has been described. The proposed method was simply depended on charge transfer reaction between reduced CLO (n-donor) and metol (N-methyl-p-aminophenol sulfate) as a chromogenic reagent (π- acceptor). The reduced drug, with zinc and concentrated hydrochloric acid, produced a purple colored soluble charge-transfer complex with metol in the presence of sodium metaperiodate in neutral medium, which has been measured at λmax 532 nm. All the variables which affected the developed and the stability of the colored product such as concentration of reagent and oxidant, temperature and time of rea

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
Fused and Modified Evolutionary Optimization of Multiple Intelligent Systems Using ANN, SVM approaches
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Feb 27 2011
Journal Name
University Of Baghdad
Determination of Cimetidine and Erythromycin ethylsuccinate Drugs Using Different Spectrophotometric Methods (Ph.D. Thesis)
...Show More Authors

In this study, four different spectrophotometric methods were applied for determination of cimetidine and erythromycin ethylsuccinate drugs in pure form and in their pharmaceutical preparations. The suggested methods are simple, sensitive, accurate, not time consuming and inexpensive. The results showed the following: The first method: Based on the formation of ion pair complex of each drug with bromothymol blue (BTB) as a chromogenic reagent. The formed complexes were extracted with chloroform and their absorbance values were measured at 427.5 nm for cimetidine and 416.5nm for erythromycin ethylsuccinate; against their reagents blanks. Two different methods, univariate method and multivariate method, were used to obtain the optimum condit

... Show More
Preview PDF
Publication Date
Thu Jun 16 2022
Journal Name
Al-khwarizmi Engineering Journal
Estimate and Analysis the Availability of Generator in Electric Power Plant Using ANN
...Show More Authors

The large number of failure in electrical power plant leads to the sudden stopping of work. In some cases, the necessary reserve materials are not available for maintenance which leads to interrupt of power generation in the electrical power plant unit. The present study, deals with the determination of availability aspects of generator in unit 5 of Al-Dourra electric power plant. In order to evaluate this generator's availability performance, a wide range of studies have been conducted to gather accurate information at the level of detail considered suitable to achieve the availability analysis aim. The Weibull Distribution is used to perform the reliability analysis via Minitab 17, and Artificial Neural Networks (ANNs) by approaching o

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Tropical Medicine And Public Health
SPECTROPHOTOMETRIC DETERMINATION OF DIPHENHYDRAMINE HCL IN PURE AND PHARMACEUTICAL FORMULATIONS USING THYMOL BLUE
...Show More Authors

This approach was developed to achieve an accurate, fast, economic and sensitivity to estimation of diphenhydramine Hydrochloride. The dye that produced via reaction between diphenhydramine HCl with thymol blue in acidic medium pH ≈ 4.0. The ion pair method include an optimization study to formed yellowcolored that extraction by liquid – liquid method. The product separated of complexes by using by chloroform solution measured spectrophotometry at 400 nm. The analysis data at optimum conditions showed that linearity concentration in a range of calibration curve 1.0 – 50 μg /mL, limit of detectionand limit of quantification 0.0786 and 0.2358 μg/mL respectively. The molar absorptivity and Sandell’s sensitivity were 1.8 × 10 -4 L/mo

... Show More
View Publication
Crossref
Publication Date
Sun Jun 21 2020
Journal Name
Baghdad Science Journal
Synthesis of Gold Nanoparticles by using Batch Method and Study its Antibacterial Activity
...Show More Authors

The research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref