Treatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was modeled with Freundlich and Langmuir adsorption isotherms.The amount of acetic acid adsorbed increased with the decrease in initial concentration of acetic acid and increased with the increase in contact time and adsorbent dose. The effects of various
important and influencing parameters such as flow rate, bed height, inlet adsorbate concentration
on breakthrough curve are studied in details in the column studies.
A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show MoreCorrosion behavior of aluminium in 0.6 mol. dm-3 NaCl solution in acidic medium 0.7 was investigated in the absence and presence of different concentrations of amino acid, methionine, as environmentally – friendly corrosion inhibitor over temperature range (293-308)K. The investigation involved electrochemical polarization method using potentiostatic technique and optical microscopy, the inhibition efficiency increased with an increase in inhibitor concentration but decreased with increase in temperature. Results showed that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface and it was found to obey Langmuir adsorption isotherm. Some thermodynamic parameters ∆. and activation ener
... Show MoreIn this study, field results data were conducted, implemented in 64 biofilm reactors to analyses extract organic matter nutrients from wastewater through a laboratory level nutrient removal process, biofilm layer moving process using anaerobic aerobic units. The kinetic layer biofilm reactors were continuously operating in Turbo 4BIO for BOD COD with nitrogen phosphorous. The Barakia plant is designed to serve 200,000 resident works on biological treatment through merge two process (activated sludge process, moving bed bio reactio MBBR) with an average wastewater flow of 50,000 m3/day the data were collected annually from 2017-2020. The water samples were analysis in the central labor
Water quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor
... Show MoreWater quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their performance is evaluated usin
... Show MoreABSRTACT Background: Soft liner material is become important in dental prosthetic treatment. They are applied to the surface of the dentures to achieve more equal force distribution , reduce localized pressure and improve denture retention by engaging undercut . So the aim of the study is to evaluate the effect of different surface treatment by air-abrasion AL2O3 and laser treatment with CO2 laser on improving the shear bond strength of the denture liner to acrylic denture base material . Materials and methods: the 30 specimens of heat cured acrylic denture base material (high Impact acrylic )and heat cured soft liner (Vertex ,Nether Lands )were prepared for this study .They were designed and divided according to type of the s
... Show MoreAdsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show MoreIn this work we experimentally investigated SWCNTs and MWCNTs to increase their thermal conductivity and electrically functionalization process using different reagents ((nitric acid, HNO3 followed by acid treatment with H2SO4), then washed with deionized water (DW) and then treated with H2O2 via ultrasonic technique. Then repeated the steps with MWCNTs and compare their results in an effort to improve experimental conditions that efficiently differentiate the surface of the single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubesi(MWCNTs) that less nanotubes destroy and to enhance the properties of them and also to reduce aggregation in liquid. the results were prove by XRD, and infrared spectroscopy (FTIR). The FTIR sp
... Show MoreThe pretreatment process can be considered one of the important processes in wastewater treatment, especially coagulation process to decrease the strength of many pollutants. This paper focused on using powdered date seeds as natural coagulant in addition to chemical coagulants (alum and ferric chloride) to find the optimum dosage of each coagulant that makes efficient removal of turbidity and chemical oxygen demand (COD) from domestic wastewater as a pretreatment process, then finding the optimum combined dosages of date seeds with alum, date seeds with ferric chloride that make efficient removal for both pollutants. Concerning turbidity, the optimum dosage for date seeds, alum and ferric chloride were 40 mg/l (79%), 70
... Show More