The present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion increases with increasing of reaction temperature, slightly decreases with increasing of liquid
hourly space velocity and not affected by particle size. Also a kinetic analysis was performed for thiophene
hydrodesulfurization reaction in fixed bed reactor and the results indicate that the reaction kinetics are not affected by pore and film diffusion limitations. The results of the comparison between the two reactors indicate that a low conversion was obtained in a fluidized bed than in fixed bed over the range of conditions studied. The lower conversion can be attributed to the gas that bypasses the bed in the form of bubbles or channels.
In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreThis research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f
... Show MoreThe "Nudge" Theory is considered one of the most recent theories, which is clear in the economic, health, and educational sectors, due to the intensity of studies on it and its applications, but it has not yet been included in crime prevention studies. The use of Nudge theory appears to enrich the theory in the field of crime prevention, and to provide modern, effective, and implementable mechanisms.
The study deals with the "integrative review" approach, which is a distinctive form of research that generates new knowledge on a topic through reviewing, criticizing, and synthesizing representative literature on the topic in an integrated manner so that new frameworks and perspectives are created around it.
The study is bas
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
Poly (3-hydroxybutyrate) (PHB) is a typical microbial bio-polyester reserve material; known as “green plastics”, which produced under controlled conditions as intracellular products of the secondary metabolism of diverse gram-negative/positive bacteria and various extremophiles archaea. Although PHB has properties allowing being very attractive, it is too expensive to compete with conventional and non-biodegradable plastics. Feasibility of this research to evaluate the suitability of using a watermelon-derived media as an alternative substrate for PHB synthesis under stress conditions was examined. Results, include the most nutrients extraction, indicated that the watermelon seeds contain a high content of nutrients makes them a promisi
... Show More