Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were simply supported subjected to two point loads. Each group consists of three beams; the first beam without CFRP, the second one, is strengthened with CFRP in shear and the third is strengthened with CFRP in both flexure and shear. Four groups with different crushing strength of (12, 20, 30 and 39 MPa). The CFRP sheets are attached externally.
It was found that in beam with low crushing strength loads transfer to the CFRP at early stages while in
those of high crushing strength, CFRP contribution only starts when full strength of the beam is fulfilled. A
full bond between CFRP sheets and the concrete is assumed in the theoretical analysis. Comparison between the theoretical and the experimental results revealed the validity of the numerical analysis and the developed methods such that there was a difference of 13% in the ultimate strength for the tested and analyzed beams.
Ruthenium-Ruthenium and Ruthenium–ligand interactions in the triruthenium "[Ru3(μ-H)(μ3-κ2-Hamphox-N,N)(CO)9]" cluster are studied at DFT level of theory. The topological indices are evaluated in term of QTAIM (quantum theory of atoms in molecule). The computed topological parameters are in agreement with related transition metal complexes documented in the research papers. The QTAIM analysis of the bridged core part, i.e., Ru3H, analysis shows that there is no bond path and bond critical point (chemical bonding) between Ru(2) and Ru(3). Nevertheless, a non-negligible delocalization index for this non-bonding interaction is calculated
... Show MoreIn the current work, the mixing ratios ( 𝛿 ) of gamma transitions were calculated from energy levels in the isotopes neodymium 60𝑁𝑎 142−150 populated in the 60Nd 142− 150 (n, n ˊγ) 60Nd 142− 150 using the 𝑎2 ratio method. We used the experimental coefficient (𝑎2 ) for two γ-transitions from the initial state itself, the statistical tensor 𝜌2(𝐽𝑖), associated with factor 𝑎2 , would be the same for the two transitions. The results obtained are in good agreement or within the experimental error with -those previously published. And existing contradictions resulting from inaccuracies in the empirical results of previous work. The current results confirm that the , 𝑎2 − method is used to calculate th
... Show Moren this research, some thermophysical properties of ethylene glycol with water (H2O) and two solvent mixtures dimethylformamide/ water (DMF + H2O) were studied. The densities (ρ) and viscosities (η) of ethylene glycol in water and a mixed solvent dimethylformamide (DMF + H2O) were determined at 298.15 K, t and a range of concentrations from 0.1 to1.0 molar. The ρ and η values were subsequently used to calculate the thermodynamics of mixing including the apparent molar volume (ϕv), partial molar volume (ϕvo) at infinite dilution. The solute-solute interaction is presented by Sv results from the equation ∅_v=ϕ_v^o+S_v √m. The values of viscosity (B) coefficients and Falkenhagen coefficient(A) of the Jone-Dole equation and Gibbs free
... Show More