Preferred Language
Articles
/
joe-2884
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Enhancing the Performance of Wireless Body Area Network Routing Protocols Based on Collaboratively Evaluated Values
...Show More Authors

Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates i

... Show More
View Publication
Scopus Crossref
Publication Date
Sun May 27 2018
Journal Name
Journal Of Advanced Transportation
Accident Management System Based on Vehicular Network for an Intelligent Transportation System in Urban Environments
...Show More Authors

As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie

... Show More
View Publication Preview PDF
Scopus (45)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Intelligent Systems
An efficient node selection algorithm in the context of IoT-based vehicular ad hoc network for emergency service
...Show More Authors
Abstract<p>With the recent growth of global populations, main roads in cities have witnessed an evident increase in the number of vehicles. This has led to unprecedented challenges for authorities in managing the traffic of ambulance vehicles to provide medical services in emergency cases. Despite the high technologies associated with medical tracks and advanced traffic management systems, there is still a current delay in ambulances’ attendance in times of emergency to provide patients with vital aid. Therefore, it is indispensable to introduce a new emergency service system that enables the ambulance to reach the patient in the least congested and shortest paths. However, designing an effici</p> ... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

View Publication
Scopus (17)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 08 2019
Journal Name
Desalination And Water Treatment
Xylenol orange removal from aqueous solution by natural bauxite (BXT) and BXT-HDTMA: kinetic, thermodynamic and isotherm modeling
...Show More Authors

Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ

... Show More
Publication Date
Sun Aug 31 2014
Journal Name
Arabian Journal Of Geosciences
Petroleum system modeling and risk assessments of Ad’daimah oil field: a case study from Mesan Governorate, south Iraq
...Show More Authors

View Publication
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Desalination And Water Treatment
Numerical modeling of performance of olive seeds as permeable reactive barrier for containment of copper from contaminated groundwater
...Show More Authors

Scopus (20)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Advanced Powder Technology
Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling
...Show More Authors

View Publication
Scopus (33)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Desalination And Water Treatment
Xylenol orange removal from aqueous solution by natural bauxite (BXT) and BXT-HDTMA: kinetic, thermodynamic and isotherm modeling
...Show More Authors

Preview PDF
Scopus (11)
Crossref (9)
Scopus Clarivate Crossref