In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreTrip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownersh
This research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi
... Show MoreArtificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex
Building Information Modeling (BIM) is becoming a great known established collaboration process in Architecture, Engineering, and Construction (AEC) industry. In various cases in many countries, potential benefits and competitive advantages have been reported. However, despite the potentials and benefits of BIM technologies, it is not applied in the construction sector in Iraq just like many other countries of the world. The purpose of this research is to understand the uses and benefits of BIM for construction projects in Iraq. This purpose has been done by establishing a fr |