In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the
... Show MoreNowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show MoreElectrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreAn electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreThe study deals with reactivity insertion linear and non linear and/or Ramp reactivity expressed as a polynomial in time in the presence of two Feedback mechanisms, using the neutronic-thermohydraulic coupling in order to predict the neutron behavior as a function of time in terms of reactor power. Also, a comparative study has been achieved in the case of the presence of the feedback mechanisms. Insertion of Ramp reactivities in terms of polynomial in time to study the behavior of power and reactivity as a function of time in the presence of two feedback mechanisms (fuel and coolant) has been carried out and the results are displayed as plots, and showed this results corresponding with international results. The present study shows t
... Show More