Preferred Language
Articles
/
joe-2884
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (22)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (7)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Technique
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
TREATMENT OF A HIGH STRENGTH ACIDIC INDUSTRIAL CHEMICAL WASTEWATER USING EXPANDED BED ADSORBER
...Show More Authors

Treatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering
Removal of Cadmium from Simulated Wastewaters Using a Fixed Bed Bio-electrochemical Reactor
...Show More Authors

In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption.  No significant effect of initial Cd concentration on the removal efficie

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Craniofacial Surgery
Single Session Facial Lipostructure by Using Autologous Fat Mixed With Platelet-Rich Fibrin Injected by Using Facial Autologous Muscular Injection Technique
...Show More Authors
Aim:

This study was designed to evaluate the role of single session autologous facial fat grafting in correcting facial asymmetries after mixing it with platelet-rich fibrin (PRF) and injecting them into rich vascular facial muscular plane.

Materials and Methods:

Fifteen patients (12 females and 3 males) with age ranging from 18 years to 40 years were included in this study and followed up during 6 months, all the patients were treated in the Al-Shaheed Ghazi Al-Hariri for specialized surgeries hospital (Medical City, Baghdad, Iraq).

Auto

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Aug 05 2015
Journal Name
International Journal Of Current Engineering And Technology
Water Quality Index Assessment using GIS Case study: Tigris River in Baghdad City
...Show More Authors

In this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t

... Show More
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Prediction of Raw Water Turbidity at the Intakes of the Water Treatment Plants along Tigris River in Baghdad, Iraq using Frequency Analysis
...Show More Authors

Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-

... Show More
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Prediction of Raw Water Turbidity at the Intakes of the Water Treatment Plants along Tigris River in Baghdad, Iraq using Frequency Analysis
...Show More Authors

Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit.  The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah

... Show More
View Publication Preview PDF