Preferred Language
Articles
/
joe-282
Semantic Similarity Assessment of Volunteered Geographic Information
...Show More Authors

The recent development in communication technologies between individuals allows for the establishment of more informal collaborative map data projects which are called volunteered geographic information (VGI). These projects, such as OpenStreetMap (OSM) project, seek to create free alternative maps which let users add or input new materials to the data of others. The information of different VGI data sources is often not compliant to any standard and each organization is producing a dataset at various level of richness. In this research the assessment of semantic data quality provided by web sources, e.g. OSM will depend on a comparison with the information from standard sources. This will include the validity of semantic accuracy as one of the most important parameter of spatial data quality parameters. Semantic similarity testing covered feature classification, in effect comparing possible categories (legend classes) and actual attributes attached to features. This will be achieved by developing a tool, using Matlab programming language, for analysing and examining OSM semantic accuracy. To identify the strength of semantic accuracy assessment strategy, there are many factors should be considered. For instance, the confusion matrix of feature classifications can be assessed, and different statistical tests should be passed. The results revealed good semantic accuracy of OSM datasets.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 15 2018
Journal Name
Strojniški Vestnik - Journal Of Mechanical Engineering
Comparative Experimental and Numerical Investigation on Electrical Discharge Drilling of AISI 304 using Circular and Elliptical Electrodes
...Show More Authors

This work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (47)
Scopus
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Classification of fetal abnormalities based on CTG signal
...Show More Authors

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
The Impact Of Adopting The Social Responsibility On Marketing Performance An Applied Study on NAFTAL Company
...Show More Authors

This research paper aims at studying the effect of adopting the corporate social responsibility on marketing performance indicators, where the study adopted the descriptive method for theoretical concepts, in addition to the statistical approach by using the SPSS v25 program to analyze the questionnaire and test the hypotheses of the study. The results showed that there is a positive correlation between social responsibility and marketing performance indicators, and the study found that it is better for NAFTAL Company to mix the environmental and social responsibilities in order to improve its marketing performance. Also, the study recommended that Naftal should adopt the four responsibilities equally, correctly and make its work

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 08 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Estimation of Superoxide Dismutase, Matrix-metalloprotinase-9, and Interleukin -18 in Patients with Type Two Diabetes Mellitus
...Show More Authors

Antioxidant status imbalance and inflammatory process are cooperative events involved in type 2 diabetes mellitus. This study aimed to investigate     superoxide dismutase as a potential biomarkers of antioxidant imbalance, matrix-metaloprotinase-9,   and interleukin -18  as biomarkers of inflammation in serum and to estimate  the effects of other confounding factors  gender, age and finally measuring the relation among the interested biomarkers.

This case - control study included 50 patients,   and   45 of  healthy subjects matched age –gender were also enrolled  in this study as a control group.    The   focused &nbsp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (18)
Scopus Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Customers emotional blackmail and reduce it the new product- study of the opinions of a sample of customers who deal with peak economy for household items in najaf al Ashraf
...Show More Authors

The challenges facing today's multi-customer and this is due to the multiplicity of products and speed in launching new products so search came to reveal the  reveal the of the new product classification standards through a relationship (good products, low interest products, useful products and products desired) and the customer emotionally blackmail through deportation (fear, obligation and guilt). dentified the problem of the research in several questions focused on the nature of the relationship between the variables of research, and for that outline supposedly to search it expresses the head of one hypothesis and branched out of which four hypotheses subset, but in order to ensure the validity of the ass

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 02 2021
Journal Name
Journal Of The College Of Languages (jcl)
Semantics of the Russian Verbs of Destruction in Contemporary Linguistics: Семантический Анализ Глаголов Деструкции Русского Языка В Современной Лингвистике
...Show More Authors

The article states that the Russian verbs of destruction belong to the lexical-semantic group of physical impact. They include verbs with the meaning of “damage” and “destroy”. It is emphasized that each of these groups is relatively independent; the cut line between them is fuzzy and arbitrary. It is postulated that when the object is completely destroyed, then the verb has the meaning of “destruction”,  and when the object is partially destroyed, then the  verb has the meaning of “damage”. It is this feature that individualizes the meaning of verbs. The study distinguishes between the groups and the nature of the object as- animate / inanimate. The object of the action of the “destruction” can only be inan

... Show More
View Publication Preview PDF
Crossref