Preferred Language
Articles
/
joe-275
A Mathematical Model of a Thermally Activated Roof (TAR) Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature
...Show More Authors

This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E) for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Improvement of CIATIM-201 Grease Properties for Use under Severe Conditions using Suitable Additives
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
An Investigation Study of Thinning Distribution in Single Point Incremental Forming Using FEM Analysis
...Show More Authors

Single Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.

This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Select the optimal project by using two methods of analytic hierarchy and goal programming
...Show More Authors

      The aim of this research is to solve a real problem in the Department of Economy and Investment in the Martyrs establishment, which is the selection of the optimal project through specific criteria by experts in the same department using a combined mathematical model for the two methods of analytic hierarchy process and goal programming, where a mathematical model for goal programming was built that takes into consideration the priorities of the goal criteria by the decision-maker to reach the best solution that meets all the objectives, whose importance was determined by the hierarchical analysis process. The most important result of this research is the selection of the second pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Computers And Concrete
Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper
...Show More Authors

Scopus (11)
Scopus
Publication Date
Mon May 20 2019
Journal Name
Journal Of Planner And Development
THE EVALUATION OF PUBLIC SERVICES IN BAQUBAH CITY BY USING REMOTE SENSING & GIS TECHNIQUES
...Show More Authors

Baqubah city has grown extremely rapidly. The rate of growth exceeds the growth of services that must grow side by side with the growth of population. There are natural features that affect the growth of Baqubah city such as Dieyala river, Alssariya river, in addition to agricultural areas .All these natural features affect the growth of Baqubah city in the running form being seen . In this research the remote sensing and geographic information system (GIS) techniques are used for monitoring urban expansion and forecasting the probable axes to the growth of the city, and found that the probability of Baqubah growth to east is preferred due to Baqubah growth to the east would never interfere with natural features. Also in this res

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Wed Dec 11 2013
Journal Name
Iraqi Journal Of Science
Diagnosing Complex Flow Characteristics of Mishrif Formation in Stimulated Well Using Production Logging Tool
...Show More Authors

Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af

... Show More
View Publication
Publication Date
Thu Sep 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation the Radiation Zone of Al-Mussaib Power Plant by using Monte Carlo Method
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF STRIP FOOTING RESTING ON GIBSON-TYPE SOIL BY USING MATLAB
...Show More Authors

This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering
Investigations on the Impact of Using Elliptic Groynes on the Flow in Open Channels
...Show More Authors

This paper presents a numerical simulation of the flow around elliptic groynes by using CFD ‎software. The flow was simulated in a flume with 4m long, 0.4m wide, ‎and 0.175m ‎high ‎‎with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow ‎‎inlet with a ‎constant the Groyne height of 10cm and a 1cm thickness, and the ‎width of Groynes equals ‎7cm‎. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of ‎0.0057‎m3/sec. The CFD ‎model showed a good ability to simulate the flow ‎around ‎Groynes with ‎ good accuracy. The results of ‎CFD software showed that when using double elliptic Groy

... Show More
View Publication Preview PDF
Crossref