Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the steel web, and the fourth model was castellated and strengthened with reactive powder concrete and lacing steel rebar's welded diagonally on two sides of the steel web. According to the Numerical results, there was an increase in ultimate load capacity compared to the reference model of about 22.74%, 51.65%, and 77.98% in the second, third, and fourth models, respectively; also, there is a reduction in deflection of 55.52%, 58.74, and 60.55% in the second, third, and fourth models, respectively, compared to the level deflection at ultimate load for the reference model, with an increase in stiffness and ductility. In comparison to the I section, the fabrication of a castellated steel beam from the double channel is more cost-effective in terms of cutting steel loss at the ends of the castellated beam, this is due to the feature of rotation and reflection of the steel channel section during cutting and forming to castellated shape.
We know that the experiments which conducted by latin square in one location or in one period (season), but there are many cases that need to conduct the same experiments in many locations or in many periods (seasons) to study the interaction between the treatments and locations or between the treatments and periods (seasons) .In this research we present an idea for conduct the experiment in several locations and in many period (seasons) by using LSD , it represent acontribution in the area of design and analysis of experiments ,we had written. we had written (theoretically) the general plans, the mathematical models for these experiments, and finding the derivations of EMS for each component (
... Show MoreBackground: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreIn this theoretical paper and depending on the optimization synthesis method for electron magnetic lenses a theoretical computational investigation was carried out to calculate the Resolving Power for the symmetrical double pole piece magnetic lenses, under the absence of magnetic saturation, operated by the mode of telescopic operation by using symmetrical magnetic field for some analytical functions well-known in electron optics such as Glaser’s Bell-shaped model, Grivet-Lenz model, Gaussian field model and Hyperbolic tangent field model. This work can be extended further by using the same or other models for asymmetrical or symmetrical axial magnetic field
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreHiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.