Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the steel web, and the fourth model was castellated and strengthened with reactive powder concrete and lacing steel rebar's welded diagonally on two sides of the steel web. According to the Numerical results, there was an increase in ultimate load capacity compared to the reference model of about 22.74%, 51.65%, and 77.98% in the second, third, and fourth models, respectively; also, there is a reduction in deflection of 55.52%, 58.74, and 60.55% in the second, third, and fourth models, respectively, compared to the level deflection at ultimate load for the reference model, with an increase in stiffness and ductility. In comparison to the I section, the fabrication of a castellated steel beam from the double channel is more cost-effective in terms of cutting steel loss at the ends of the castellated beam, this is due to the feature of rotation and reflection of the steel channel section during cutting and forming to castellated shape.
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
This research presents a comparison of performance between recycled single stage and double stage hydrocyclones in separating water from water/kerosene emulsion. The comparison included several factors such as: inlet flow rate (3,5,7,9, and 11 L/min), water feed concentration (5% and 15% by volume), and split ratio (0.1 and 0.9). The comparison extended to include the recycle operation; once and twice recycles. The results showed that increasing flow rate as well as the split ratio enhancing the separation efficiency for the two modes of operation. On the contrary, reducing the feed concentration gave high efficiencies for the modes. The operation with two cycles was more efficient than one cycle. The maximum obtained effici
... Show MoreThis study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations.
The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop.
A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%). The percentage
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show MoreDue to the importance of solutions of partial differential equations, linear, nonlinear, homogeneous, and non-homogeneous, in important life applications, including engineering applications, physics and astronomy, medical sciences, and life technology, and their importance in solutions to heat transfer equations, wave, Laplace equation, telegraph, etc. In this paper, a new double integral transform has been proposed.
In this work, we have introduced a new double transform ( Double Complex EE Transform ). In addition, we presented the convolution theorem and proved the properties of the proposed transform, which has an effective and useful role in dealing with the solution of two-dimensional partial differential equations. Moreover
... Show MoreThrough an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreUnder-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci
... Show MoreIn this work, an anti-reflection coating was prepared in the region (400-1000) nm of wavelength, with a double layer of silicon dioxide (SiO2) as an inner layer and the second layer of the mixture (SiO2) and titanium dioxide (TiO2) with certain ratios, as an outer layer using the chemical spraying method with a number of 6 sprays of layer SiO2 and 12 sprays of layer SiO2 - TiO2. Using the method of chemical spraying deposited on the glass as a substrate with a different number of sprays of SiO2, and a fixed number of TiO2-SiO2. The optical and structural properties were determined using UV-Vis spectroscopy and atomic force mi
... Show More