Efficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290 standard guides this study. The software in this package may combine CAD (Computer-Aided Design) and CAE (Computer-Aided Engineering) without requiring extra design applications. This study tested SPCC and SPHC plate materials with five thickness variations. The findings embrace the number of failure risks associated with press bending exhibited on the von Mises stress diagram, which is directly proportional to showing the thickness limit of each material type throughout the bending process. The study's findings lay the groundwork for improving manufacturing quality by lowering the number of faulty goods produced by trial and error. Because the maximum allowable die width is 12 mm, the thickness limit of the press bending process is 2 mm. However, due to the greater intensity of the SPCC material, it has a reduced defect rate compared to SPHC material.
The purpose of this article was to identify and assess the importance of risk factors in the tendering phase of construction projects. The construction project cannot succeed without the identification and categorization of these risk elements. In this article, a questionnaire for likelihood and impact was designed and distributed to a panel of specialists to analyze risk factors. The risk matrix was also used to research, explore, and identify the risks that influence the tendering phase of construction projects. The probability and impact values assigned to risk are used to calculate the risk's score. A risk matrix is created by combining probability and impact criteria. To determine the main risk elements for the tender phase of
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated vi
... Show MoreThere are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.
In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.
The comparison proof that this simple proposed method gives good results and it can be used in analy
... Show MoreCharacteristic evolving is most serious move that deal with image discrimination. It makes the content of images as ideal as possible. Gaussian blur filter used to eliminate noise and add purity to images. Principal component analysis algorithm is a straightforward and active method to evolve feature vector and to minimize the dimensionality of data set, this paper proposed using the Gaussian blur filter to eliminate noise of images and improve the PCA for feature extraction. The traditional PCA result as total average of recall and precision are (93% ,97%) and for the improved PCA average recall and precision are (98% ,100%), this show that the improved PCA is more effective in recall and precision.
In multivariate survival analysis, estimating the multivariate distribution functions and then measuring the association between survival times are of great interest. Copula functions, such as Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical situations and applicable fo
... Show MoreThis study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal c
... Show MoreSixteen polycyclic aromatic hydrocarbons (PAHs) concentrations were measured in aerosol samples collected for the period from April 2012 to February 2013 at thermal south power station of Baghdad. Fourty one aerosol sample were extracted with (1:1) dichloromethane and methanol using soxhlet for seventeen hour. The extraction solution was analyzed applying GC/MS. The PAH concentrations outside thermal south power station were higher than those inside it, and higher in summer season than in winter. Naphthalene, pyrene, Anthracene, Indeno [1, 2, 3-cd] pyrene and Phenanthrene were the most abundant PAHs detected in all points at the site sampling. The total polycyclic aromatic hydrocarbon (TPAH) and total suspended particles (TSP) concentrat
... Show MoreWater quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show More