Efficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290 standard guides this study. The software in this package may combine CAD (Computer-Aided Design) and CAE (Computer-Aided Engineering) without requiring extra design applications. This study tested SPCC and SPHC plate materials with five thickness variations. The findings embrace the number of failure risks associated with press bending exhibited on the von Mises stress diagram, which is directly proportional to showing the thickness limit of each material type throughout the bending process. The study's findings lay the groundwork for improving manufacturing quality by lowering the number of faulty goods produced by trial and error. Because the maximum allowable die width is 12 mm, the thickness limit of the press bending process is 2 mm. However, due to the greater intensity of the SPCC material, it has a reduced defect rate compared to SPHC material.
Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead
... Show MoreMunicipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant
... Show MoreDeveloping a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features. The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
ABSTRACT this paper extends the literature on the elements and effect of financial literacy by investigating the elements of financial literacy and the impact of financial literacy on financial inclusion and savings. This research confirms the results of researches of other economies but exposes some dissimilarities as well. The principal factors of financial literacy are discovered to be government efficiency, educational level, income, economic performance and infrastructure. Both education levels and financial literacy are found to be meaningfully and positively linked to financial inclusion and savings in G20 economies
Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreThe aim of this investigation is to present the idea of SAH – ideal , closed SAH – ideal and closed SAH – ideal with respect to an element , and s- of BH – algebra .
We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra .
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show More