Preferred Language
Articles
/
joe-261
Removal of Fluoride Ions from Wastewater Using Green and Blue-green Algae Biomass in a Fluidized Bed System

The removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the increase of bed depth but decreases with the increase of flow rate. Thomas and Yoon-Nelson models were used to analyze the experimental data and there was a good matching between the theoretical and the experimental data for both models. Desorption studies indicate that NaOH solutions at different pH values (8-10) were used to recover the fluoride ions sorbed onto the algal biomass. It is noteworthy that the desorption efficiency at pH =10 remains close to 95 % of the initial value of sorption capacity. So the desorption performance remains appreciable.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Zinc Removal from Industrial Wastewater by Electro-Coagulation Process

Electro coagulation treatment was used for zinc removal from electroplating wastewater of the State Company for Electrical Industries . This wastewater, here consists zinc ions with maximum concentration in solution of 90 ppm .

The parameters that influenced the wastewater treatment are: current density in the range  1-1.4 mA/cm2, pH  in the range 5-10, temperature in the range 25-45°C and time in the range 10-180 minute.

The research is a laboratory experimental type using batch system for electrical process with direct current. The cell comprised of aluminum electrode as anode and stainless steel electrode as cathode. Thirty experiments and one hundred fifty sample lab tests were carried out in this research

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Adsorptive Removal of Furfural from Wastewater on Prepared Activated Carbon from Sawdust

Furfural is a toxic aromatic aldehyde that can cause a severe environmental problem especially the wastewater drown from petroleum refinery units. In the present work, a useless by-product from local furniture manufacturing industry; sawdust was used as raw material for the preparation of activated carbon which is chemically activated with phosphoric acid. The effect of adsorption variables which include initial pH of solution (2-9), agitation speed (50-250) rpm, agitation time (15-120) min, initial concentration of furfural (50-250) ppm, and amount of adsorbent material (0.5-2.5) g for the three adsorbents used (prepared activated carbon, commercial activated carbon and raw sawdust) were investigated in a batch process

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reverse Osmosis Polyamide Membrane for the Removal of Blue and Yellow Dye from Waste Water

The present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 13 2011
Journal Name
Baghdad Science Journal
Testing the efficiency of duckweed Lemna spp. in reducing the concentration of zinc and iron from the wastewater when increase biomass

The study searches for the possibility of using duckweed Lemna spp. to reduce the concentration of heavy metals (zinc and iron) in the wastewater of Baghdad by culturing two different densities of the plant with a fresh weights 5 and 10 g/l and without the plant under optimum uncontrolled conditions. The result showed that there was a significant differences at the possibility level of (p? 0.05) for the three treatments, as the highest percentages for zinc removal in the second day for the plant treatment of 5 g/l were 66.40%, while the highest percentage of iron removal were in the tenth days for the plant treatment 10 g/l were 80 %, and noticed that the increase of the heavy metals concentrations accumulated in the plant after bei

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
Isolation and Classification of Green Alga Stigeoclonium attenuatum and Evaluation of its Ability to Prepare Zinc Oxide Nanoflakes for Methylene Blue Photodegradation by Sunlight

           Algae have been used in different applications in various fields such as the pharmaceutical industry, environmental treatments, and biotechnology. Studies show that the preparation of nanoparticles by a green synthesis method is a promising solution to many medical and environmental issues. In the current study, the green alga Stigeoclonium attenuatum (Hazen) F.S. Collins 1909 was isolated and identified from the Al-Hillah River (Governorate of Babylon) in the middle of Iraq. The green synthesis by the aqueous extract of algae was used to prepare the nanoflakes of ZnO. Nanoflakes of ZnO are characterized by X-Ray diffraction (XRD) and scanning electron microscope (SEM) with flakes shape and dimensions ranging be

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 01 2024
Journal Name
Green Analytical Chemistry
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Green synthesis of gold NPs by using dragon fruit: Toxicity and wound healing
Abstract<p>In this work, the study of <italic>Hylocereus undatus</italic> properties was done by studying quantitative phytochemical compounds and seeking for total phenolic compounds, synthesis of gold nanoparticles was created via reduction of aqueous gold ions with the aqueous fruit extract of The <italic>Hylocereus undatus</italic> (dragon). The synthesized AuNPs were asserted by using (Uv-Vis) spectrophotometer; Fourier transforms infrared (FI-IR) spectroscopy, Atomic force microscope (AFM), Scanning Electron Microscopy (SEM) Zitasizer. The absorbance for SPR is noticed in 546 nm by using Uv-Visible spectroscopy The SEM and AFM analysis evidenced the particle size betwee</p> ... Show More
Scopus (15)
Crossref (13)
Scopus Crossref
View Publication
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Green Synthesis Concept of Nanoparticles From Environmental Bacteria and Their Effects on Pathogenic Bacteria

Soil bacteria play an interesting role in the reduction of Ag+ ions and the formation of silver nanoparticles (AgNPs), which may be a good source for nanoparticles and play a major role in nanotechnology applications. The concept of this project was to study the effects of these environmentally produced nanoparticles on the growth of some pathogenic bacteria. The environmental bacteria were isolated from soil, purified on broth cultures, and centrifuged, while the supernatant was extracted to detect its ability to convert silver nitrate to nanoparticles. The AgNPs was detected by Atomic Force Microscopy (AFM), while Granularity Cumulating Distribution (GCD) was employed to estimate the AgNPs sizes. The results showed the

... Show More
Scopus (18)
Crossref (9)
Scopus Crossref
View Publication Preview PDF