Some structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertical load was 100% and L/D ratio (20) the torsional capacity for pile group increases about 42% if compared with the torsional capacity when the percentage of allowable vertical load was 0% for the same L/D ratio. Also increasing L/D ratio leads to increasing the torsional capacity of pile group, when the percentage of allowable vertical load is 100% and L/D ratio (30), the torsional capacity for pile group increased about 51% if compared with torsional capacity when L/D ratio was (20) for the same groups and the same percentage of allowable vertical load. At failure the twist angle for pile group remain constant 3° when the percentage of allowable load change from 0% to 100 and L/D ratio 20, while it decreases from 2.9° to 2.7° when the percentage of allowable load change from 0% to 100% respectively and L/D ratio 30.
This paper analyzes the effect of scaling-up model and acceleration history on seismic response of closed-ended pipe pile using a finite element modeling approach and the findings of 1 g shaking table tests of a pile embedded in dry and saturated soils. A number of scaling laws were used to create the numerical modeling according to the data obtained from 1 g shake table tests performed in the laboratory. The current study found that the behaviors of the scaled models, in general have similar trends. From numerical modeling on both the dry and saturated sands, the normalized lateral displacement, bending moment, and vertical displacement of piles with scale factors of 2 and 35 are less than those of the pile with a scale factor of 1 and the
... Show MoreIn this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening be
The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.
This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show MoreLength of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.
Leishmaniasis is a widespread parasitic disease caused by Leishmania parasite, this disease considers a major health problem among worldwide. Treatments available are expensive or with cytotoxic side effect. This study was aimed to investigate the effect of an herbal new compound, called artemisinin, derived from a Chinese plant called Artemisia annua. Various concentrations were studied in vitro against L. tropica amastigotes by chamber counting to investigate its effect on the proliferation of promastigotes. Three incubation periods were adopted (24, 48, 72) hours. The results showed a significant decrease in surviving promastigotes, in parallel with the normal parasite count of untreated promastigotes, along the periods studied. Th
... Show MoreLeishmaniasis is a widespread parasitic disease caused by Leishmania parasite, this disease considers a major health problem among worldwide. Treatments available are expensive or with cytotoxic side effect. This study was aimed to investigate the effect of an herbal new compound, called artemisinin, derived from a Chinese plant called Artemisia annua. Various concentrations were studied in vitro against L. tropica amastigotes by chamber counting to investigate its effect on the proliferation of promastigotes. Three incubation periods were adopted (24, 48, 72) hours. The results showed a significant decrease in surviving promastigotes, in parallel with the normal parasite count of untreated promastigotes, along the periods studied. This stu
... Show MoreThe purpose of this research was to prepare, characterize, and evaluate the new antimicrobial peptide KSL peptide encapsulated in poly(D,L-lactide-co-glycolide) (PLGA)composite microspheres. KSL was loaded in poly(acryloyl hydroxyethyl) starch (acHES) micropar-ticles, and then the peptide-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction /evaporation method.
KSL-loaded PLGA microspheres were also prepared without the starch hydrogel microparticle microspheres for comparison study. KSL peptide microspheres were characterized for drug content, surface morphology, microspheres size determination, polymers stability , in vitro microspheres degradation and in vitro release. KSL peptide
... Show More