The removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant respectively. The sorption process, which is PH dependent, shows maximum removal of metal ions at pH 7. Langmuir and Freundlich isotherm expressions were found to give both a good fit to the experimental data. Kinetic data correlated well with Lagergren second order kinetic model, and flotation step enhanced the removal efficiency of nickel and cadmium from wastewater from about 75% to 94% and reduce turbidity so it can dispense with the filtering process, which is expensive technology. It is believed that flotation separation has great potential as a clean water and wastewater treatment technology.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
In this paper waste natural material (date seed) and polymer particles(UF) were used for investigation of removal dye of the potassium permanganate. Also study effect some variables such as pH, dye concentration and adsorbent concentration on dye removal. 15 experimental runs were done using the itemized conditions designed established on the Box-Wilson design employed to optimize dye removal. The optimum conditions for the dye removal were found: (pH) 12, (dye con.) 2.38 ppm, (adsorbant con.) 0.0816 gm for date seed with 95.22% removal and for UF (pH) 12, (dye con.) 18 ppm, (adsorbant con.) 0.2235 gm with 91.43%. The value of R-square was 85.47% for Date seed and (88.77%) for UF.
... Show More
Dairy wastewater generally contains fats, lactose, whey proteins, and nutrients. Casein precipitation causes the effluent to decompose into a dark, strong-smelling sludge. Fluid waste contains soluble organic matter, suspended solids, and gaseous organic matter, which cause undesirable taste and smell, grant tone and turbidity, and advance eutrophication, which plays an essential role in increasing biological oxygen demand (BOD) in water. It also contains detergents and disinfecting agents from the rinses and washing processes, which increase the need for chemical oxygen (COD). One of the characteristics of dairy effluents is their relatively high temperature, high organic contents, and wide pH range, so the discharge of wastewater into
... Show MoreElectrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreABSTRACT Purpose: the aim of this in vitro study was to compare the marginal gap and internal fitness between single crowns and the crowns within three-unit bridges of zirconium fabricated by CAD-CAM system. Materials and methods: A standard model from ivoclar company was used as a pattern to simulate three-units bridge (upper first molar and upper first premolar) as abutments used to fabricate stone models, eight single crowns for premolar and eight of three units bridges. Crowns and bridges fabricated by CAD-CAM system were cemented on their respective stone models then sectioned at the mid-point buccolingaully and misiodistaly and examined under stereomicroscope. Result: the marginal gap in premolar crowns and premolar within bridge we
... Show MoreIn this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreThermal evaporation method has used for depositing CdTe films
on corning glass slides under vacuum of about 10-5mbar. The
thicknesses of the prepared films are400 and 1000 nm. The prepared
films annealed at 573 K. The structural of CdTe powder and prepared
films investigated. The hopping and thermal energies of as deposited
and annealed CdTe films studied as a function of thickness. A
polycrystalline structure observed for CdTe powder and prepared
films. All prepared films are p-type semiconductor. The hopping
energy decreased as thickness increased, while thermal energy
increased.
Background. Endodontic infections caused by remaining biofilm following disinfection with chemical fluids encourage secondary bacterial infection; hence, employing laser pulses to activate the fluids is advised to improve microbial biofilm clearance. This study investigated the performance of Er,Cr:YSGG laser in photon-induced photoacoustic streaming (PIPS) agitation of 5.25% sodium hypochlorite (NaOCl) to enhance the removal of mature Enterococcus faecalis (E. faecalis) biofilms in complex root canal systems. Methods. The mesial roots of the lower first and second molars were separated and inoculated with E. faecalis bacteria for 30 days. The roots were irrigated with 5.25% NaOCl, some of them were agitated with passive ultrasonic
... Show More