Preferred Language
Articles
/
joe-2585
Removal of Nickel and Cadmium Ions from Wastewater by Sorptive Flotation: Single and Binary systems
...Show More Authors

The removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant respectively. The sorption process, which is PH dependent, shows maximum removal of metal ions at pH 7. Langmuir and Freundlich isotherm expressions were found to give both a good fit to the experimental data. Kinetic data correlated well with Lagergren second order kinetic model, and flotation step enhanced the removal efficiency of nickel and cadmium from wastewater from about 75% to 94% and reduce turbidity so it can dispense with the filtering process, which is expensive technology. It is believed that flotation separation has great potential as a clean water and wastewater treatment technology.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
International Journal Of Advancement In Life Sciences Research
Efficiency of Eco-Friendly Surface in Removing Organic and Inorganic Pollutants from Wastewater
...Show More Authors

Introduction: The current study investigated the use of acid-treated rice husks to remove heavy metals and organic pollutants from water containing heavy metals (R2C and Cd2) and organic pollutants (phenol and atrazine). Methods: The adsorption effect of acid-treated rice husks was compared with other adsorbents such as activated carbon, chitosan, and bentonite clay. Result: both acid-treated rice husks and activated carbon were highly efficient materials, and thus, rice husks were established as a cost-effective alternative. It was revealed that acid treatment of rice husks enhanced adsorption capacity by half, and lead removal was nearly doubled. The most effective pH value for optimizing organic pollutants and heavy metals while

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Nov 10 2023
Journal Name
Chalcogenide Letters
Enhancement efficiency of cadmium selenium solar cell by doping within silver
...Show More Authors

We studied at the morphology, structural setup, and optical characteristics of thin cadmium (CdSe) films a thickness of 250 nm that were created by thermal evaporation over glass, The films exhibited a hexagonal shape were crystalline, and tended to form grains in the (111) crystallographic direction, according to the X-ray diffraction examinations. These characteristics were established using the investigation's findings. Through the use of thin films of CdSe doped with Ag at a concentration of 1.5%, the crystal structure orientations for pure CdSe (25.32, 41.84) and CdSe:Ag (25.39, 41.01) that were both pure as well as those that were doped with silver were both determined. The band gap of the optical spectrum decreased by 1.93–

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Minimization of Chloride and Sulphate Ions Concentrations in the Effluents from an Elctroplating Plant
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Adsorption of some Metal Ions from Aqueous Solution on Iraqi Rice Bran and Its Relation to the Physical Properties of these Metal Ions
...Show More Authors

Adsorption studies were carried out to test the ability of the Iraqi rice bran (Amber type) to adsorb some metals divalent cations (Cd2+, Co2+, Cu2+, Fe2+, Ni2+, Pb2+, and Zn2+) as an alternative tool to remove these pollutants from water. The Concentrations of these ions in water were measured using flame and flamless atomic absorption spectrophotometry techniques. The applicability of the adsorption isotherm on Langmuir or Freundlisch equation were tested and found to be dependent on the type of ions. The results showed different adsorptive behavior and different capacities of the adsorption of the ions on the surface of the bran. The correlation between the amounts adsorbed and different cation parameters including (electronegativity, io

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Environmental Research
Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency?
...Show More Authors

Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech

... Show More
View Publication
Scopus (79)
Crossref (73)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Environmental Research
Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency?
...Show More Authors

View Publication
Scopus (79)
Crossref (73)
Scopus Clarivate Crossref
Publication Date
Thu Mar 27 2025
Journal Name
Environmental Technology Reviews
Advanced treatment of petroleum refinery wastewater by electro-Fenton and photo-catalytic processes
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
Biosorption of Cd(II) ions by Chlorella microalgae: isotherm, kinetics processes and biodiesel production
...Show More Authors

This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2019
Journal Name
International Journal Of Environmental Research
A Comparative Study for the Identification of Superior Biomass Facilitating Biosorption of Copper and Lead Ions: A Single Alga or a Mixture of Algae
...Show More Authors

View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oxidation of Phenolic Wastewater by Fenton's Reagent
...Show More Authors

Phenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation i

... Show More
View Publication Preview PDF