The solar photocatalytic degradation of diuron, which is one of the herbicides, has been studied by a solar pilot plant in heterogeneous solar photocatalysis with titanium dioxide. The pilot plant was made up of compound parabolic collectors specially designed for solar photocatalytic applications. The influence of different variables such as, H2O2 initial concentration, TiO2 initial concentration, and diuron initial concentration with their relationship to the degradation efficiency were studied. Hydrogen peroxide (H2O2) found to increase the rate of diuron degradation. The best removal efficiency of heterogeneous solar photocatalytic TiO2 system was found to be 46.65 % and for heterogeneous solar photocatalytic TiO2/ H2O2 system was found to be 80.65 %. Based on these results, the solar photocatalytic degradation by TiO2/ H2O2 system could be a useful technology for the treatment of effluents containing diuron.
Background: The elimination of the microorganisms from the root canal systems, an important step for the successful root canal treatment. This study was conducted to evaluate the antibacterial effectiveness of the photoactivated disinfection by using the toluidine blue O and a low- energy light emitting diode (LED) lamp . Materials and method: Sixty single rooted extracted teeth were decoronated, instrumented, irrigated, sealed at the apex and contaminated with endodontic anaerobic bacteria for 7 days to form biofilms in prepared root canals. Group I. Twelve teeth were medicated by photosensitizer (toluidine blue O) solution activated by diode lamp (FotoSan; CMS Dental, Copenhagen, Denmark).Group II. Twelve teeth were medicated by the tricr
... Show MoreCadmium element is one of the group IIB and classified as heavy metal and effects on human health and environment. The present work concerns with the biosorption of Cd(II) ions from aqueous solution using the outer layer of onions. Adsorption of the used ions was found to be pH dependent and maximum removal of the ions by outer layer of onions and was found to be 99.7%.
In the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws), this present work achieved by different position of crack. Stiffness re
... Show MoreDecolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 an
... Show MoreThe aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate
... Show MoreThe main focus of research is on the nature of applications in the fields of science and technology, particularly nanotechnology. In this paper, a simple, non-toxic, inexpensive, and environmentally friendly green method was used to synthesize TiO2 nanoparticles using the extraction of portulacaria afra plant leaves and TiCl4 as a precursor. The synthesized titanium dioxide nanoparticles were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction patterns, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The SEM image of TiO2 nanoparticles showed a few spherical, non-agglomerated particles. The average diameter of the nanoparticles, ac
... Show MoreA plastic tubes used as absorber of active flat plate solar collector (FPSC) for heating water were studied numerically and experimentally. The set-up is located in Babylon (republic of Iraq) 43.80 East longitude and 32.30 North latitude with titled of 450 toward the south direction. The study involved three dimensions mathematical model for flat coil plastic absorber which solved by FLUENT-ANSYS-R.18 program. Experiments were conducted at outdoor conditions for clear days on January and February 2018 with various water volume flow rates namely (500, 750, 1000, 1250, and 1500 Liter per hour LPH) on each month for Reynolds number range of (1 x 104 to 5 x 104) th
... Show MoreTitanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreA method was developed that offers a rapid, simple and accurate technique for the determination of chlorophenols at trace levels in aqueous samples with very limited volumes of organic solvents. These compounds were acetylated, then preliminarily extracted with n-hexane. The enriched chlorophenols were directly analyzed using gas chromatography with an electron-capture detector. The detection limits were in the range of 0.001–0.005 mg/L, except for 2-chlorophenol, which was always above 0.013 mg/L. Relative standard deviation for the spiked water samples ranged from 2.2 to 6.1%, while relative recoveries were in the range of 67.1 to 101.3%.