This study investigates the performance of granular dead anaerobic sludge (GDAS) bio-sorbent as permeable reactive barrier in removing phenol from a simulated contaminated shallow groundwater. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in phenol-containing aqueous solutions. The results of GDAS tests proved that the best values of operating parameters, which achieve the maximum removal efficiency of phenol (=85%), at equilibrium contact time (=3 hr), initial pH of the solution (=5), initial phenol concentration (=50 mg/l), GDAS dosage (=0.5 g/100 ml), and agitation speed (=250 rpm). Fourier transform infrared (FTIR) analysis proved that the carboxylic acid, aromatic, alkane, alcohol, and alkyl halides groups are responsible for the bio-sorption of phenol onto GDAS.
A 2D advection-dispersion, solved numerically by computer solutions (COMSOL) Multiphysics 3.5a software which is based on the finite element method, has been used to simulate the equilibrium transport of phenol within groundwater. This model is taking into account the pollutant sorption onto the GDAS and sandy soil which is represented by Langmuir equation. Numerical and experimental results proved that the barrier plays a potential role in the restriction of the contaminant plume migration. Also, the barrier starts to saturate with contaminant as a function of the travel time. A good agreement between the predicted and experimental results was recognized with root mean squared error not exceeded the 0.055.
Groundwater is an important source of fresh water especially in countries having a decrease in or no surface water; therefore itis essential to assess the quality of groundwater and find the possibility of its use in different purposes (domestic; agricultural; animal; and other purposes). In this paper samples from 66 wells lying in different places in Baghdad city were used to determine 13 water parameters, to find the quality of groundwater and evaluate the possibility of using it for human, animal and irrigation by calculating WQI, SAR, RSC and Na% and TDS indicators. WQI results showed that the groundwater in all wells are not qualified for human use, while SAR and RSC indicated that most samples are suitable for irrigation use, and
... Show MoreGroundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD
... Show MoreElectrocoagulation is an electrochemical process of treating polluted water where sacrificial anode corrodes to produce active coagulant (usually aluminum or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles). The present study investigates the removal of phenol from water by this method. A glass tank with 1 liter volume and two electrodes were used to perform the experiments. The electrode connected to a D.C. power supply. The effect of various factors on the removal of phenol (initial phenol concentration, electrode size, electrodes gab, current density, pH and treatment time) were studied. The results indicated that the removal efficiency decreased as initial phenol concentration
... Show MoreGranular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreAsphaltene is one of the fractions of the crude oil which is soluble in aromatics such as benzene or toluene and insoluble in alkane such as n-heptane, n-pentane or petroleum ether (mixture of alkane compounds). Asphaltene precipitation is one of the most common problems that sometimes occurs in both oil recovery and refinery processes as a result of changing in pressure, oil composition, or temperature. Therefore the stability of asphaltene in the crude oil must be studied to show the tendency of it for precipitating asphaltene to prevent it (Asphaltene precipitation and deposition problem) and eliminate the burden of high treatment costs.
In the present study, saturate, aromatic, resin and asphaltene (SAR
... Show MoreSeeking pharmacist advice about minor ailments is a common practice among Iraqi patients because such advice is free and quick. Unfortunately, the assessment and management of minor ailments by Iraqi pharmacists were inappropriate. Therefore, this study aimed to develop a model for a mobile application that can assist community pharmacists in the diagnosis and management of minor ailments.
The scientific content of the application was based on the information in the symptoms in the pharmacy and British Nati
Nanocrystalline ZnO/Zeolite type A composite was prepared by simple method of operation by . the precipitation of zinc oxide and loading on zeolite 5A in one step. Characterization was made by X-ray diffraction (XRD), X-ray fluorescence(XRF), N2 adsorption- desorption for BET surface area, and Atomic force microscopy (AFM). Results showed that zinc oxide was loaded on zeolite as noticed by the characteristic peaks and was of nano scale having an average diameter of 88.57nm. The percentage loading of ZnO on zeolite A was 28.37% and the surface area was 222m2/g. The activity of the prepared catalyst was examined in the desulfurization of double hydrogenated diesel fuel. The process was investigated in a
... Show MoreBackground:sThe aims of this study were to evaluate and compare the ability of three different techniques to obdurate simulated lateral canals, evaluate the effect of the main canal curvature on obturation of lateral canals and compare the gutta-percha penetration between coronal and apical lateral canals. Materials and methods: Resin blocks with 30 straight and 30 curved were used in this study. Each canal has two parallel lateral canals. The main canal has 0.3 mm apical diameter and 0.04 taper. The canals were divided into six groups according to canal curvature and obturation techniques used (n=10): Groups C1 and C2: straight and curved canals obturated with continuous wave technique using E&Q masterTM system. Groups O1 and O2: straight
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli