The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and improving the routing protocol to support them makes it more suitable for IoT systems.
The proposed routing protocol is simulated using Castalia-3.2 and all the cases are examined to show the enhancement that achieved by each case. The proposed routing protocol shows better performance than other protocols do regarding Packet Delivery Ratio (PDR) and latency. It preserves network reliability since it does not generate routing or data packets needlessly. Routing protocol with added features (actuating and mobility) shows good performance. But that performance is affected by increasing the speed of mobile nodes.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreElectromyography (EMG) is being explored for evaluating muscle activity. For gait analysis, EMG needs to be small, lightweight, portable device, and with low power consumption. The proposed superficial EMG (sEMG) system is aimed to be used in rehabilitation centers and biomechanics laboratories for gait analysis in Iraq.
The system is built using MyoWare, which is controlled by using STM32F100 microcontroller. The sEMG signal is transferred via Bluetooth to the computer (about 30m range) for further processing. MATLAB is used for sEMG signal conditioning. The overall system cost (without computer) is about $80. The proposed system is validated using wired NORAXON EMG using the mean root mean squared metho
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
Georeferencing process is one of the most important prerequisites for various geomatics applications; for example, photogrammetry, laser scan analysis, remotely sensing, spatial and descriptive data collection, and others. Georeferencing mostly involves the transformation of coordinates obtained from images that are inhomogeneous due to accuracy differences. The georeferencing depends on image resolution and accuracy level of measurements of reference points ground coordinates. Accordingly, this study discusses the subject of coordinate’s transformation from the image to the global coordinates system (WGS84) to find a suitable method that provides more accurate results. In this study, the Artificial Neural Network (ANN) method wa
... Show MoreA global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreGetting knowledge from raw data has delivered beneficial information in several domains. The prevalent utilizing of social media produced extraordinary quantities of social information. Simply, social media delivers an available podium for employers for sharing information. Data Mining has ability to present applicable designs that can be useful for employers, commercial, and customers. Data of social media are strident, massive, formless, and dynamic in the natural case, so modern encounters grow. Investigation methods of data mining utilized via social networks is the purpose of the study, accepting investigation plans on the basis of criteria, and by selecting a number of papers to serve as the foundation for this arti
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
Steganography is a useful technique that helps in securing data in communication using different data carriers like audio, video, image and text. The most popular type of steganography is image steganography. It mostly uses least significant bit (LSB) technique to hide the data but the probability of detecting the hidden data using this technique is high. RGB is a color model which uses LSB to hide the data in three color channels, where each pixel is represented by three bytes to indicate the intensity of red, green and blue in that pixel. In this paper, steganography based RGB image is proposed which depends on genetic algorithm (GA). GA is used to generate random key that represents the best ordering of secret (image/text) blocks to b
... Show MoreWater/oil emulsion is considered as the most refractory mixture to separate because of the interference of the two immiscible liquids, water and oil. This research presents a study of dewatering of water / kerosene emulsion using hydrocyclone. The effects of factors such as: feed flow rate (3, 5, 7, 9, and 11 L/min), inlet water concentration of the emulsion (5%, 7.5%, 10%, 12.5%, and 15% by volume), and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the separation efficiency and pressure drop were studied. Dimensional analysis using Pi theorem was applied for the first time to model the hydrocyclone based on the experimental data. It was shown that the maximum separation efficiency; at split ratio 0.1, was 94.3% at 10% co
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show More