The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and improving the routing protocol to support them makes it more suitable for IoT systems.
The proposed routing protocol is simulated using Castalia-3.2 and all the cases are examined to show the enhancement that achieved by each case. The proposed routing protocol shows better performance than other protocols do regarding Packet Delivery Ratio (PDR) and latency. It preserves network reliability since it does not generate routing or data packets needlessly. Routing protocol with added features (actuating and mobility) shows good performance. But that performance is affected by increasing the speed of mobile nodes.
In this research, optical absorption data (the imaginary part of the dielectric function Ɛ2 as a function of photon energy E) were re-analyzed for three samples of a-Si:H thin films using derivative methods trying to investigate the ambiguity that accompany the interpretation of the optical data of these film in order to obtainm the optical energy gap (Eg) and the factor (r) which in concerned with the density of state distribution near the mobility edge directly without the need for a pre- assumption for the factor r usually followed in traditional methods such as the Tauc plot. The derivative method was used for two choices for the factor q (which in connected with the dependence of the dipole matrix element on the photon energy ) for
... Show MoreUnknown subsurface leaking water sources and possible subsurface seepage from a sewage tank in a garden at Al-Khawarizmi engineering college, University of Baghdad, were detected in this study. The 2D electrical resistivity imaging. The ERI survey is carried out along two lines, 60m and 50m long, with an electrode spacing of 1 m, forming a cross using the Wenner-Schlumberger array configuration. Line 1 is 60m, while line 2 is 50m. Soil samples were collected from line 1 at positions of electrode 34, which shows a high resistivity value, and electrode 55, which shows low resistivity, for laboratory analysis. Robust inversion and modelling processes showed relative change and high contrast in interpreted resistivities. Soil analy
... Show MoreIn the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical de
... Show MoreThe paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
Inelastic longitudinal electron scattering C2 form factor in 48Ca has been utilized
to study the effects of fitting parameters on the sigma meson exchange type
potentials as a residual interaction. By coupling the core particles with model space
particle, where the latter used as an active part of residual interaction in the so called
core polarization process, it is included as a correction with first order perturbation
theory to the main calculation of model space, and the excitation energy has been
carried out with ( ). A model space wave vectors are generated in full fp shell
model with FPD6 as effective interaction with mixing configuration technique and
harmonic oscillator as a single particle wave function.
Ultrasonic pulse echo measurements on porous alumina as ceramic
material with porosities ranging from (20-40)% showed effect of volume
fraction of porosity on both thermal and elastic properties. A quadratic relationships, by using a least squares method, is deduced for the dependence of the shear velocity, longitudinal velocity, shear modulus, Young's modulus, bulk modulus, Poisson 's ratio, Debye temperature, specific heat, and thermal conductivity on the total porosity. By these relationships, the thermal and elastic properties results of pore-free alumina were calculated. The elastic properties results of
... Show MoreMicrobial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex
... Show MoreGroundwater is considered as one of the most important sources of fresh-water, on which many regions around the world depend, especially in semi-arid and arid regions. Protecting and maintaining groundwater is a difficult process, but it is very important to maintain an important source of water. The current study aims to assess the susceptibility of groundwater to pollution using the DRASTIC model along with the GIS environments and its tool boxes. A vulnerability map was created by relying on data collected from 55 wells surveyed by the researchers as well as archived records from governmental institutions and some international organizations. The results indicate that the region falls into three vulnerability functional zones , namely
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte