This work dealt with separation of naphthenic hydrocarbons from non-naphthenic hydrocarbons and in particular concerns an improved process for increasing the naphthenes concentration in naphtha, The separation was examined using adsorption by Y and B zeolite in a fixed bed process. The concentration of naphthenes in the influent and effluent streams was determined using PONA classification. The effect of different operating variables such as feed flow rate (2- 4 L/hr); bed length (50 - 80 cm) on the adsorption capacity of Y and zeolite was studied. Increasing the bed length lead to increase the naphthenes concentration, and increasing the flow rate lead to decrease in the concentration of naphthenes, It was found that the decrease in flow rate to 2 L/hr and increase the bed length to 80 cm lead to increase the naphthenes concentration from 6.2 to 24.8 Wt. %.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show MoreBiogas is one of the most important sources of renewable energy and is considered as an environment friendly energy source. The major goal of this research is to see if rice husk (Rh) waste and pomegranate peels (PP) waste are suitable for anaerobic digestion and what effect NaOH pre-treatment has on biogas generation. Rice husk and pomegranate peels were tested in anaerobic digestion under patch anaerobic conditions as separate wastes as well as blended together in equal proportions. The cumulative biogas output for the blank test (no pretreatment) was 1923 and 2526 ml, respectively using a single rice husk (Rh) and pomegranate peel (PP) substrates. The 50% rice husk digestion and 50% of pomegranate peels for blank test gave the result 224
... Show Morethe study aimed to identify the impact of the types of cooking utensils in transition metal elements to food and the effect of acid and storage in the concentration of these elements. used five types of cooking utensils including aluminum. tefal, astainls steel, glass. (pyrex), and ceramic prepared in it the food meal. the same meals were repeated add to them acid. the estimate of mineral elements in the meal prepared before storage and after storage in refrigerator temperature degree. the result shows the increase of aluminum concentration in the meals that prepared in aluminum pot reaching 2.913 pmm while reached less concentration in the meal prepared in astainls pot reaching 0.325 pmm. the highest concentration of iron reached 25.2 p
... Show MoreThis study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show More