This work dealt with separation of naphthenic hydrocarbons from non-naphthenic hydrocarbons and in particular concerns an improved process for increasing the naphthenes concentration in naphtha, The separation was examined using adsorption by Y and B zeolite in a fixed bed process. The concentration of naphthenes in the influent and effluent streams was determined using PONA classification. The effect of different operating variables such as feed flow rate (2- 4 L/hr); bed length (50 - 80 cm) on the adsorption capacity of Y and zeolite was studied. Increasing the bed length lead to increase the naphthenes concentration, and increasing the flow rate lead to decrease in the concentration of naphthenes, It was found that the decrease in flow rate to 2 L/hr and increase the bed length to 80 cm lead to increase the naphthenes concentration from 6.2 to 24.8 Wt. %.
This work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreThis research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe problem of this research lies in the fact that there is a lack of accurate scientific perceptions about the size of the use of Iraqi women’s social networking sites and the motives behind this use and the expectations generated by them.
The goals of the research are as follows:
1- Determine the extent of Iraqi women’s use of social networking sites (Facebook, YouTube, twitter, and Instagram).
2- Investigative the motives behind the use of social networking sites by Iraqi women.
3- Detecting the repercussions of Iraqi women’s use of social networking sites (Facebook, you tube, twitter, and Instagram).
The research is classified as a descriptive one. The researchers use the survey methodology. The research commu
Wheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreImage retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show More