In this paper, the behavior of spliced steel girders under static loading is investigated. A group of seven steel I-girders were tested experimentally. Two concentrated loads were applied to each specimen at third points and the load was increased incrementally up to the yield of the specimen. Two types of splices were considered; the bearing type and the friction-grip type splices. For comparison, an analytical study was made for the tested girders in which the finite element analysis program (Abaqus) was used for analysis. It was found that the maximum test load for spliced girders with bearing type splices was in the range of (34%) to (67%) of the maximum test load for the reference girder. For girders spliced by using friction-grip type splices, the maximum test load was in the range of (90%) to (99%) of the maximum test load for the reference girder. The analytical results show a good agreement with the experimental results with a difference in maximum deflection at midspan was not more than (15%) at maximum load for all girders.
The main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations; 0.03 to 2.0 weight percent, and the effect of rising electrolyte temperature was also followed in the range 20 to 50ᴼ C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show MoreThis study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreCorrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
Background: Aesthetic archwires are used to overcome the aesthetic problems of stainless steel wires but the color of the coating layer can be changed with time when exposed to oral environments. The aim of this study was to evaluate the degree of color change of different aesthetic archwires from different companies under different coloring solutions. Materials and Methods: One hundred fifty samples of coated archwires from three companies (Highland, G&H and Dany) were immersed in 5 solutions (artificial saliva, turmeric, tea, coffee and Miranda) to evaluate the degree of color changes after 7, 14 and 21 days using visible spectrophotometer. Data were collected and analyzed using one way ANOVA and post hoc Tukey’s tests. Resu
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreGypseous soils are considered one of the most problematic soils. The skirted foundation is an alternative technology that works to improve the bearing capacity and reduce settlement. This paper investigates the use of square skirted foundations resting on gypseous soil subjected to concentric and eccentric vertical load with eccentricity values of 4, 8, and 17 mm in 16 experimental model tests. To obtain the results by using this type of foundation, a small-scale physical model was designed to obtain the load–settlement behavior of the square skirted foundation; the dimension of the square footing is 100 mm × 100 mm with 1 mm thickness, the skirt depth (
An effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n
... Show More