This paper presents a brief study undertaken for improving the performance of information and communication management of construction projects through investing in information and communication technologies (ICT). The work aims at first to investigate and diagnose the problems, challenges, weaknesses, and inefficiencies related to information and communication management in projects in the construction industry of Iraq. Studying the diagnosed matters and the different solutions of ICT to improve project management performance is following the investigation process. The research presents a technological system suggested to process a lot of the diagnosed problems, challenges, weakness, and inefficiencies of the construction projects and to improve the current performance of project management and execution. The suggested system principles and fundamentals, benefits, features, classification and types, and the different solutions are described to ease and improve the process of development, adoption, and implementation of the system. The results show that the proposed system can improve the performance of the current state of project management through improving the processes of information and communication management.
The γ- mixing ratios of γ- transitions from levels of 56Fe populated in reaction are calculated using least square fitting program for the first time in the case of pure and mixed transitions the results obtained have been compound with γ Values determined by other methods .The comparison shows that the agreement is good this confirmed the valilety of this method in calculating of values for such γ- transitions key word: γ- transition ,Multipole mixing ratios ,Least square fitting method.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreQuantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using layers of ITO/TPD: PMMA/CdSe/Alq3, ITO/TPD: PMMA/CdS/Alq3 and ITO/TPD: PMMA/ZnS/Alq3 devices which prepared by phase segregation method. The hybrid white light emitting devices consists, of three-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers. The second layer was QDs while the third layer was tris (8-hydroxyquinoline) aluminium (Alq3
... Show MoreThe importance of this study stems from the importance of preserving the environment and creating a clean sustainable environment from waste and emissions and all the operations of industrial companies in general and cement companies in particular by activating sustainability accounting standards. The research aims to identify and diagnose deviations in violation of sustainability standards by employing the non-renewable resources standard (NR0401) For the construction industries to create a sustainable audit environment, the deductive approach was followed in the theoretical side and the inductive and descriptive approach to the practical side. The most important results of the research were the possibility of applying sustainab
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show More This research aims to estimate stock returns, according to the Rough Set Theory approach, test its effectiveness and accuracy in predicting stock returns and their potential in the field of financial markets, and rationalize investor decisions. The research sample is totaling (10) companies traded at Iraq Stock Exchange. The results showed a remarkable Rough Set Theory application in data reduction, contributing to the rationalization of investment decisions. The most prominent conclusions are the capability of rough set theory in dealing with financial data and applying it for forecasting stock returns.The research provides those interested in investing stocks in financial
... Show More