Preferred Language
Articles
/
joe-256
Impact of Different H/D Ratio on Axial Gas Holdup Measured by Four-Tips Optical Fiber Probe in Slurry Bubble Column

In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D) ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than 18" and H/D higher than 5 indicated that there is little effect of diameter on gas holdup. Also, local section-average gas holdups increase with increasing superficial gas velocity, while the effect of solid loading are less significant than that of superficial gas velocity.  

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Optical Fiber Biomedical Sensor Based on Surface Plasmon Resonance

Optical fiber biomedical sensor based on surface plasmon resonance for measuring and sensing the concentration and the refractive index of sugar in blood serum is designed and implemented during this work. Performance properties such as signal to noise ratio (SNR), sensitivity, resolution and the figure of merit were evaluated for the fabricated sensor. It was found that the sensitivity of the optical fiber-based SPR sensor with 40 nm thick and 10 mm long Au metal film of the exposed sensing region is 7.5µm/RIU, SNR is 0.697, figure of merit is 87.2 and resolution is 0.00026. The sort of optical fiber utilized in this work is plastic optical fiber with a core diameter of 980 µm, a cladding of 20μm, and a numerical aperture of 0.

... Show More
Scopus (11)
Crossref (9)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Iraqi Journal Of Physics
Influence of Sn doping ratio on the structural and optical properties of CdO films prepared by laser induced plasma

In this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films  are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping  in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
The effect of different flooding ratio on Al-Shuwaija marsh

In this research, the effect of changing the flood level of Al-Shuwaija marsh was studied using the geographic information systems, specifically the QGIS program, and the STRM digital elevation model with a spatial analysis accuracy of 28 meters, was used to study the marsh. The hydraulic factors that characterize the marsh and affecting on the flooding such as the ranks of the water channels feeding the marsh and the degree of slope and flat areas in it are studied. The area of immersion water, the mean depth, and the accumulated water volume are calculated for each immersion level, thereby, this study finds the safe immersion level for this marsh was determined.

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Nov 19 2024
Journal Name
Iraqi Journal Of Applied Physics
View Publication
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Simulations of Four Types of Optical Aberrations using Zernik Polynomials

In this paper, a computer simulation is implemented to generate of an optical aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and spherical Zernike aberrations were simulated in a subroutine using MATLAB function and applied as a phase error in the aperture function of an imaging system. The studying demonstrated that the Point Spread Function (PSF) and Modulation Transfer Function (MTF) have been affected by these optical aberrations. Areas under MTF for different radii of the aperture of imaging system have been computed to assess the quality and efficiency of optical imaging systems. Phase conjugation of these types aberration has been utilized in order to correct a distorted wavefront. The results showed that

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Argon Gas on the Structure and Optical Properties of Nano Titanium Oxide Prepared by PLD

In this research the effect of laser energy by using argon gas on the some physical properties of semiconductor film of TiO2, was studied used Q-Switch Nd:YAG laser in different energies (600-1000) mJ with temperature 100 0C for glass substrate under vacuum nearly 10-3 - - , and by AFM test the roughness of films increased when the energy of laser increased too. The values of roughness between (6.77-13) nm, therefore the thicknesses increased to change from (34.88 - 165.48) nm, so the absorption of film increased because of the thickness of the film increased and we can get the optical energy gap between (3.6-3.9) eV.

View Publication Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Effect of Recirculation Ratio on the Uniformity Flow in a High Area Ratio of Outlets Pipe at Different Entrance flow rates

The uniform flow distrbiution in the multi-outlets pipe highly depends on the several parameters act togather. Therefor, there is no general method to achieve this goal. The  goal of this study is to investigate the proposed approach that can provide significant relief of the maldistribution. The method is based on re-circulating portion of flow from the end of the header to reduce pressure at this region . The physical model consists of main manifold with uniform longitudinal section having diameter of 152.4 mm (6 in), five laterals with diameter of 76.2 mm (3 in), and spacing of 300 mm. At first, The experiment is carried out with conventional manifold, which is a closed-end. Then, small amount of water is allowed

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Optical Fiber Technology
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Low Loss in a Gas Filled Hollow Core Photonic crystal fiber

The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Dispersion in a Gas Filled Hollow Core Photonic Crystal Fiber

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe

... Show More
Crossref
View Publication Preview PDF