The present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg obtained was 2.25 bar on July 19, 2013 at 2:00 pm. The current system shows cooling capacity of 0.15 ton with coefficient of performance of 0.48, and minimum evaporator temperature obtained was 14.2oC. A comparison of the present with previous works, showed that most of the previous work used ammonia as the main refrigerant, and even that used methanol it was as aqua methanol, or to be part of pair refrigerant, while the present work use the methanol as the main and the only refrigerant in the system. The results and the factors that provided by the current work, give a good understanding for using the methanol as a refrigerant with the solar absorption system. And the system can work in continuous operation cycle. This work gave fundamental understanding for designing solar refrigeration system, by using the results of present study to design air-conditioning unit, with one ton capacity, using the solar energy, and the methanol as a refrigerant.
The depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F
... Show MoreTillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreThis study is conducted to determine the effect of pathogenicity of the fungus Lecanicillium lecanii in some aspects of life of the insect saw toothed beetle Oryzaephilus surinamensis L. (Coleoptera: Silvanidae) under laboratory conditions with three concentrations of spores and mildew commentator (1 × 103, 1 × 105, 1 × 107) spore / ml , on eggs and larvae second phase of the insect .The study also includs the effect of the fungus concentrations of germination on rice (jasmine) by using direct spray treatment. The results show great fungus efficiency in the control of some aspects of life of the insect, where varied efficiency depends on the concentration of spores, The highest percentage loss of eggs is 63.33% at a concentration
... Show MoreThe aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreSlurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which
In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10
AlPO4 catalysts supported with WO3 were prepared by impregnating the catalysts with ammonium metatungstate. The catalysts were checked by X-ray Diffraction (XRD), AFM, and SEM; also, the catalysts analysis was done by X-Ray (EDX). Finally, the N2 adsorption-desorption was used to measure the pore volume and surface area of the catalyst. The prepared catalyst has a surface area of 185.83 m2/g, pore volume of 0.645 cm3/g at a calcination temperature of 500°C for 3 hrs, and particle size of AlPO4 with an average of 35.36 nm. Transesterification of edible oil using WO3/AlPO4 was performed, it was observed that WO3/AlPO4 catalysts give high conversion of edible oil, and this is attributed to the high surface area, smaller particle size, and the
... Show MoreBackground: The study aimed to investigate the effect of different techniques of en masse retraction on the vertical and sagittal position, axial inclination, rate of space closure, and type of movement of maxillary central incisor. Materials and methods: A typodont simulation system was used (CL II division 2 malocclusion). Three groups were used group 1(N=10, T-loop), group 2(N=10, Time-Saving loop), and group 3(N=10, Microimplant). Photographs were taken before and after retraction and measurements were made using Autodesk AutoCAD© software 2010. Kruskal-Wallis one-way analyses of variance and Mann-Whitney U test (p?0.05) were used. Results: The rate of space closure showed no significant difference among the three groups (p?0.05), whi
... Show More