The present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg obtained was 2.25 bar on July 19, 2013 at 2:00 pm. The current system shows cooling capacity of 0.15 ton with coefficient of performance of 0.48, and minimum evaporator temperature obtained was 14.2oC. A comparison of the present with previous works, showed that most of the previous work used ammonia as the main refrigerant, and even that used methanol it was as aqua methanol, or to be part of pair refrigerant, while the present work use the methanol as the main and the only refrigerant in the system. The results and the factors that provided by the current work, give a good understanding for using the methanol as a refrigerant with the solar absorption system. And the system can work in continuous operation cycle. This work gave fundamental understanding for designing solar refrigeration system, by using the results of present study to design air-conditioning unit, with one ton capacity, using the solar energy, and the methanol as a refrigerant.
Abstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreWind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreClimate change is a severe problem due to the continuous dynamic changes in urbanization in cities, and reaching it requires high-resolution spatial data represented by using remote sensing technology, as the data of the Space Science Network of NASA was relied on to measure the change in the climate of Baghdad city for a period of four decades 1981-2021, using the climate change equation referred to in the research and then tabulating the data in Excel. The results showed evident changes in the climatic rates, especially during the fourth time cycle; the high rates of temperature and low rates of relative humidity and precipitation indicate that the city’s climate is heading towards drought, and similarities appeared between the rates
... Show MoreIn this paper, isobutane (R-600a) is used as a suitable substitute for (R-134a) when changing the length of capillary tube. And the experimental data on capillary tube are obtained under different conditions such as (subcooling and ambient temperatures) on domestic refrigerator (9ft3 size), this data shows that (R-600a) a suitable substitute for (R134a) .The test presented a model for a steady state, two-phase flow in capillary tube for vapour compression system .The numerical model depends on conservation equations (mass, energy and momentum) as wall as the equation of state for refrigerant. The solution methodology was implemented by using finite difference techniques. The system results indicate that it is possible to change the refri
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreIn cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreThis dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermor
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreNanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show More