The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied conditions. Finite difference method and computer solutions (COMSOL) multiphysics 3.5a software based on finite element method were used to simulate the one-dimensional equilibrium transport of lead through sand aquifer with and without presence of barrier. The predicted and experimental results proved that the reactive barrier plays a potential role in the restriction of the contaminant plume migration and a reasonable agreement between these results was recognized.
The aim of this work is to develop an axi-symmetric two dimensional model based on a coupled simplified computational fluid dynamics (CFD) and Lagrangian method to predict the air flow patterns and drying of particles. Then using this predictive tool to design more efficient spray dryers. The approach to this is to model what particles experience in the drying chamber with respect to air temperature and humidity. These histories can be obtained by combining the particles trajectories with the air temperature/humidity pattern in the spray dryer. Results are presented and discussed in terms of the air velocity, temperature, and humidity profiles within the chambers and compared for drying of a 42.5% solids solution in a spray chamber
... Show MoreThis paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
Abstract
In this research we study the wavelet characteristics for the important time series known as Sunspot, on the aim of verifying the periodogram that other researchers had reached by the spectral transform, and noticing the variation in the period length on one side and the shifting on another.
A continuous wavelet analysis is done for this series and the periodogram in it is marked primarily. for more accuracy, the series is partitioned to its the approximate and the details components to five levels, filtering these components by using fixed threshold on one time and independent threshold on another, finding the noise series which represents the difference between
... Show MoreResearch was: 1- known as self-efficacy when students perceived the university. 2- know the significance of statistical differences in perceived self-efficacy according to gender and specialty. Formed the research sample of (300) students were chosen from the original research community by way of random (150) male specialization and scientific and humanitarian (150) females specialized scientific and humanitarian. The search tool to prepare the yard tool to measure perceived self-efficacy based on measurements and previous literature on the subject of perceived self-efficacy. The researcher using a number of means, statistical, including test Altaúa and analysis of variance of bilateral and results showed the enjoyment of the research s
... Show MoreDifferent ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than th
... Show MoreA new approach for baud time (or baud rate) estimation of a random binary signal is presented. This approach utilizes the spectrum of the signal after nonlinear processing in a way that the estimation error can be reduced by simply increasing the number of the processed samples instead of increasing the sampling rate. The spectrum of the new signal is shown to give an accurate estimate about the baud time when there is no apriory information or any restricting preassumptions. The performance of the estimator for random binary square waves perturbed by white Gaussian noise and ISI is evaluated and compared with that of the conventional estimator of the zero crossing detector.
The significant shortage of usable water resources necessitated the creation of safe and non-polluting ways to sterilize water and rehabilitate it for use. The aim of the present study was to examine the ability of using a gliding arc discharge to inactivate bacteria in water. Three types of Bacteria satisfactory were used to pollute water which are Escherichia coli (Gram-negative), Staphylococcus aurous (Gram-positive) and salmonella (Gram-negative). A DC power supply 12V at 100 Hz frequency was employed to produce plasma. pH of water is measured gradually during the plasma treatment process. Contaminated water treated by gliding arc discharge at steadying the gas flow rate (1.5 l/mi