Preferred Language
Articles
/
joe-2566
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters. the following (Biological Oxygen Demand( ), Phosphate,( ) Sulfate(), Nitrate( ), Calcium(Ca), Magnesium(Mg), Total Hardness(TH), Potassium(K), Sodium (Na), Chloride (CL), Total Dissolved Solids (TDS), Electric conductivity (EC), Alkalinity(ALK)). The ANN models tried herein were the Multisite- Multivariate ANN models (5-sites, 14 variables), five models were built, one for each of the five stations as the missing data station. The linear
ANN (traditional) models fail to make the prediction of all variables with high correlation coefficient simultaneously. Hence a non- linear input ANN model was developed herein and believed to be a new modification in ANN modeling. It was found that the ANNs have the ability to predict water level and water quality parameters at all the sites with a good degree of accuracy, the range of correlation coefficients obtained are (12.9%-97.2%) for linear models, while for this model with Non-linear terms, The range of correlation coefficients obtained is (71.8%-99.6%).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Bionatura
Evaluation of the quality of potable water in Al-Rusafa side, Baghdad, Iraq
...Show More Authors

Safe drinking water is essential for the present and future generations' health. This study aims to assess drinking water quality in Baghdad's Al-Rusafa neighborhood. Water samples were taken from 32 neighborhoods on this side. The quality of the examined potable water samples differed depending on the water source. This investigation's pH, chlorine, EC, TDS, TSS, Cd, and Pb levels were below acceptable ranges. TDS levels in Al-Mada'in are more significant than acceptable (>600ppm) water levels. Bacteria have polluted six communities (Shigella, Salmonella, Escherichia coli, and Klebsiella). Bacterial quality of drinking water and gram-negative bacteria resistant to chlorine in Baghdad's municipal water supply. Regarding pH, the w

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Water security in Basra Study economic reality and prospects for future water
...Show More Authors

It  can be said that the Security of water  in  Basra from the visual task vital strategic issues of concern to the attention of researchers in various attributions and those interested in water, environmental, economic, social, cultural and political affairs ... etc. This view of the great importance of the issue of water in the occupied Basra, which is characterized by parochialism and scarcity, When looking at the sources of our daily lives and in our reality today. We find that millions of people living on the two main exporters Tabaaan oil and water. And depleted oil wealth However Manfred him the most attention because we entered it surpasses all other sources of income, but is not it a littl

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 12 2025
Journal Name
Mustansiriyah Journal Of Sports Science
A Review of the Use of Artificial Intelligence Algorithms for Predicting Injuries and Performance in Football Players
...Show More Authors

The purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury p

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Construction and Operation of Solar Energy Dish for Water Heating
...Show More Authors

Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Nov 11 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Correlation between Streptococci Mutans and salivary IgA in relation to some oral parameters in saliva of children
...Show More Authors

Background: Saliva plays an important role in oral health. Several salivary proteins are involved in the antimicrobial defence mechanism and are able to eliminate or inhibit bacterial growth in the oral cavity. Secretory IgA (SIgA) is one of the principal antibodies present in saliva, could help oral immunity by preventing microbial adherence, neutralizing enzymes and toxins. The aim of this study was to investigate the relationship between salivary Streptococcus Mutans (SM) count and S IgA in stimulated whole saliva in children with primary dentition compared to those with permanent teeth in relation to some oral hygiene parameters. Material and methods: Stimulated whole saliva was collected from 50 children (25 with primary dentation and

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Medico -legal Update
Histological changes in liver tissue resulting from Hydatid cyst infection: Comparison between sheep and cattle in iraq
...Show More Authors

Scopus (4)
Scopus