An experimental and numerical study has been carried out to investigate the forced convection heat transfer by clean or dusty air in a two dimensional annulus enclosure filled with porous media (glass beads) between two vertical concentric cylinders. The outer cylinder is of (82 mm) outside diameters and the inner cylinder of (27 mm) outside diameter. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at an ambient temperature. The investigation covered values of input power of (6.3, 4.884, 4.04 and 3.26 W), Reynolds number values of (300, 700, 1000, 1500, and 2000) and dust ratio values (density number N) of (2, 4, 6 and 8). A computer program in MATLAB has been built to carry out the numerical solution by writing the governing equation in finite difference method. The local Nusselt number, the average Nusselt number, the contours of temperature field and velocity field were presented to show the flow and heat transfer characteristics. The results show that when clean air flow, the wall temperature gradually increases along the cylinder length in the direction of flow and decrease as Reynolds number increase while it increases with input power. For dusty air flow results show that the wall
temperature gradually increases along the axial direction and increase with Reynolds number and with input power, and the maximum reduction in heat transfer will be 30 % for N=8 at Re=2000. Comparison was made between the present experimental and numerical results and it gives good agreement. The experimental and numerical Nusselt number follows the same behavior with a mean
deviation of 12%.
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show Moreيتطلب نظام الحماية الكاثودية للتيار القسري (ICCP) قياسات كميات منخفضة للغاية من الخصائص الكهربائية. استخدم العمل التجريبي الحالي وحدة مستشعر Adafruit INA219 للحصول على قيم الجهد والتيار وقدرة الحمل الافتراضي الذي يستهلك طاقة منخفضة جدًا تحاكي نظام ICCP. تكمن المشكلة الرئيسية في تكييف مستشعر INA219 مع بيئة LabVIEW بسبب عدم وجود مكتبة المستشعر هذا. تم تخصيص هذا العمل لتكييف وحدة استشعار Adafruit INA219 في بيئة LabVIEW من خلال إنشاء
... Show More|
The prevalence of gastrointestinal symptoms of COVID-19 is variable with different types of presentations. Some of them many present with manifestations mimicking surgical emergencies. Yet, the pathophysiology of acute abdomen in the context of COVID-19 remains unclear. We present a case of a previously healthy child who presented with acute appendicitis with multisystemic inflammatory syndrome. We also highlight the necessity of considering the gastrointestinal symptoms of COVID-19 infection in pediatric patients in order to avoid misdiagnosis and further complications. |
Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump
... Show MoreWithin this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show MoreTransportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph th
... Show MoreSignificant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the