An experimental and numerical study has been carried out to investigate the forced convection heat transfer by clean or dusty air in a two dimensional annulus enclosure filled with porous media (glass beads) between two vertical concentric cylinders. The outer cylinder is of (82 mm) outside diameters and the inner cylinder of (27 mm) outside diameter. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at an ambient temperature. The investigation covered values of input power of (6.3, 4.884, 4.04 and 3.26 W), Reynolds number values of (300, 700, 1000, 1500, and 2000) and dust ratio values (density number N) of (2, 4, 6 and 8). A computer program in MATLAB has been built to carry out the numerical solution by writing the governing equation in finite difference method. The local Nusselt number, the average Nusselt number, the contours of temperature field and velocity field were presented to show the flow and heat transfer characteristics. The results show that when clean air flow, the wall temperature gradually increases along the cylinder length in the direction of flow and decrease as Reynolds number increase while it increases with input power. For dusty air flow results show that the wall
temperature gradually increases along the axial direction and increase with Reynolds number and with input power, and the maximum reduction in heat transfer will be 30 % for N=8 at Re=2000. Comparison was made between the present experimental and numerical results and it gives good agreement. The experimental and numerical Nusselt number follows the same behavior with a mean
deviation of 12%.
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show More: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
The article considers the language of the mass media as a synthesis of the language means of all other styles of language. It is alleged that the newspaper and journalistic language actively uses foreign words and elements of words, replenishing the vocabulary of the language. It is noted that the lexical-semantic system of language is sensitive to socio-economic, political, cultural and scientific-technical changes. Attention is focused on the fact that one of the reasons that affect the change in the lexical composition of the language are the mass media. Thus, the language of the media is characterized by the use of a variety of neutral vocabulary, which, in conjunction with other words in atypical combinations for it, can acquire additi
... Show MoreThe debate on the methodology of media and communication research is no longer subject to the logic of the contradiction between the quantitative and the qualitative approach, nor the logic of the comparison between them. The nature of the topics presented for research, the problems they raise, the goals to be achieved from the research, and the epistemological positioning of researchers are among the critical factors that dictate the appropriate approach or methodological approaches to conduct their research. This positioning means the implicit philosophical principles upon which any researcher relies and which determine the path he/ she takes to produce scientifically approved knowledge. The method of the researcher's access to the phe
... Show MoreThe study aims to determine the concentrations of radon, humidity, and CO2 in residences within the Mitham Al-Tammar neighbourhood of Kufa, utilising an Airthings 2960 Wave Plus device in the living rooms of each household. The concentration of radon varied, with a minimum value of 13 ± 3.9 Bq/m3 and a maximum value of 90 ± 5.8 Bq/m3, yielding an average rate of 35.8 ± 4.889 Bq/m3. The concentrations of total VOCs in residences ranged from 69.26 ppb to 810.14 ppb, with a mean of 321.4855 ± 40.4. The humidity percentages exhibited a minimum concentration of 51.68% and a maximum of 122.97%, averaging 76.594 ± 4.298. The concentrations of volatile organic compounds and
... Show More