Preferred Language
Articles
/
joe-2560
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm
...Show More Authors

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Outdoor Scene Classification Using Multiple SVM
...Show More Authors

This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the fir

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Feature Extraction Using Remote Sensing Images
...Show More Authors

Feature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Texts Ciphering by using Translation Principle
...Show More Authors

The proposed algorithm that is presented in this paper is based on using the principle of texts translation from one language to another, but I will develop this meaning to cipher texts by using any electronic dictionary as a tool of ciphering based on the locations of the words that text contained them in the dictionary. Then convert the text file into picture file, such as BMP-24 format. The picture file will be transmitted to the receiver. The same algorithm will be used in encryption and decryption processing in forward direction in the sender, and in backward direction in the receiver. Visual Basic 6.0 is used to implement the proposed cryptography algorithm.

View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of The College Of Education For Women
Using Online Platforms to Improve Writing
...Show More Authors

Due to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 21 2017
Journal Name
Lecture Notes In Computer Science
Emotion Recognition in Text Using PPM
...Show More Authors

In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Mar 03 2024
Journal Name
The Science Teacher
Using Scenarios to Assess Student Learning
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Using LiF Disc in Thermoluminescence Dosimetry
...Show More Authors

A LiF (TLD-700) PTFED disc has adiameter of (13mm) and thickness of (0.4mm) for study the response and sensetivity of this material for gamma and beta rays by using (TOLEDO) system from pitman company. In order to calibrate the system and studying the calibration factor. Discs were irradiated for Gamma and Beta rays and comparing with the theoretical doses. The exposure range is between 15×10-2 mGy to 1000×10-2 mGy. These doses are within the range of normal radiation field for workers.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using Wavelet Network
...Show More Authors

 

            This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.

 

 

View Publication Preview PDF