The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have been subjected to the Langmuir and Freundlich isotherm models. The Langmuir model was chosen to describe the sorption of solute on the solid phase of PRB. COMSOL Multiphysics 3.5a based on finite element method was used for formulation the transport of copper ions in two- dimension physical model under equilibrium condition. Numerical and experimental results proved that the PRB plays a potential role in the restriction of the contaminant plume migration. A good agreement between the predicted and experimental results was recognized with mean error (ME) not exceeded 10 %.
Advancements and modernizations introduced into the educational and pedagogical systems have significantly impacted teaching processes and how subjects are presented and explained to students. The focus has shifted to how learners interact with the material they need to learn, providing sufficient opportunities for learning and granting them freedom and self-confidence to achieve learning objectives. The research problem stems from the researcher's experience as a lecturer in the College of Physical Education and Sports Science, particularly in teaching basketball. She observed that some instructors were deficient in using the most effective teaching methods. The researcher formulated her research question based on these observations: "What
... Show MoreBackground: Fifteen percent of small for gestational age are small as a result of fetal growth restriction, which could be due to maternal, placental or fetal factors. It is an important clinical problem associated with increase perinatal mortality and morbidity. Leptin is a protein that produced by many tissues including the placenta (syncytiotropholoast). Dysregulation of leptin metabolism may be implicated in preeclampsia and IUGR pathogenesis.
Aim of the study: To study the trend of leptin level alteration in maternal serum and cord blood in pregnancies complicated by fetal growth restriction and its relation with fetal outcome.
Methods: An Analytic, cross- sectional study conducted in Al-Elwyia Maternity Teaching Hospital and
The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreA simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreObjectives: acute kidney injury (AKI) is a serious pathophysiology side effect of rhabdomyolysis. Inflammatory mechanisms play a role in the development of rhabdomyolysis-induced AKI. Citronellol (CT) is a naturally occurring monoterpene alcohol (3,7-Dimethyl-6-often-1-ol) found in aromatic plant species' essential oils. In this study, we explored the protective effects of Citronellol on glycerol-induced AKI.
Methods: Four groups of eight mice each (n=8) were formed by randomly dividing the animals into the groups, glycerol-induced AKI model group, low-dose CT-treated group (50mg/kg), high-dose CT-treated group (100mg/kg), and control group. The renal functions of mice from all groups were evalua
... Show More