The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have been subjected to the Langmuir and Freundlich isotherm models. The Langmuir model was chosen to describe the sorption of solute on the solid phase of PRB. COMSOL Multiphysics 3.5a based on finite element method was used for formulation the transport of copper ions in two- dimension physical model under equilibrium condition. Numerical and experimental results proved that the PRB plays a potential role in the restriction of the contaminant plume migration. A good agreement between the predicted and experimental results was recognized with mean error (ME) not exceeded 10 %.
(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show MoreComplexes of Co(II),Ni(II),Cu(II) and Zn(II) with mixed ligands of phenylalanine (L) and tributylphosphine (TBPh) were prepared in aqueous ethanol with (2:1:1) (M:L:TBPh). The prepared complexes were characterized using flame atomic absorption,(C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the phenylalanine and complexes against two selected type of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structure was suggested for all prepared complexes.
Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
This research was aimed to study the exposure of Razzazah Lake to major hydrological changes in recent years as a result of natural climatic changes and drought, high evaporation in lake due to stop discharge from Habbaniyah Lake by Al- majera channel. During 2019, we collected surface water samples at three locations, and three samples from groundwater, in addition one samples from each location Imam Ali Drop and Sewage water of Karbala. The Results show that the heavy isotopes in lake and groundwater well are enriched during the warm period, and depleted during the cold period. Chemically, The dominant cations and anions in Al-Razzaza lake water are mainly of in Order Ca > Na > Mg and Cl>SO4 and the water
... Show MoreThe adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
Kriging, a geostatistical technique, has been used for many years to evaluate groundwater quality. The best estimation data for unsampled points were determined by using this method depending on measured variables for an area. The groundwater contaminants assessment worldwide was found through many kriging methods. The present paper shows a review of the most known methods of kriging that were used in estimating and mapping the groundwater quality. Indicator kriging, simple kriging, cokriging, ordinary kriging, disjunctive kriging and lognormal kriging are the most used techniques. In addition, the concept of the disjunctive kriging method was explained in this work to be easily understood.
Abstract : A research was conducted to study the process parameters affecting hexavalent chromium Cr (VI) (carcinogenic compound) the removal percentage from the electrical industries company waste water that contain 88 mg/l of Cr (VI) concentration by adsorption onto tea wastes. Synthetic water with 88 mg/l Cr (VI) concentration was used. Several operation parameters affecting Cr (VI) removal efficiency were investigated, such as pH, initial Cr (VI) concentration, stirring time and tea wastes dose. The experimental results reveal that maximum Cr (VI) removal reached up to 94.26% at pH of 2, stirring time of 180 minute, tea wastes do
... Show More