The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have been subjected to the Langmuir and Freundlich isotherm models. The Langmuir model was chosen to describe the sorption of solute on the solid phase of PRB. COMSOL Multiphysics 3.5a based on finite element method was used for formulation the transport of copper ions in two- dimension physical model under equilibrium condition. Numerical and experimental results proved that the PRB plays a potential role in the restriction of the contaminant plume migration. A good agreement between the predicted and experimental results was recognized with mean error (ME) not exceeded 10 %.
Background: Hypertension is a major global health concern that increases the risk of cardiovascular disease. Understanding the impact of age and treatment types on blood pressure control is essential for optimizing therapeutic strategies. Aim: This study aims to assess how different treatment types and patient age influence blood pressure control in hypertensive patients. Methodology: A binary logistic regression model was employed to analyze data from 48 patients diagnosed with hypertension. The study investigated the impact of two treatment regimens and patient age on the likelihood of achieving optimal blood pressure levels. The statistical significance of the findings was evaluated using chi-square tests and p-values. Results: T
... Show MoreBubbled slabs can be exposed to damage or deterioration during its life. Therefore, the solution for strengthening must be provided. For the simulation of this case, the analysis of finite elements was carried out using ABAQUS 2017 software on six simply supported specimens, during which five are voided with 88 bubbles, and the other is solid. The slab specimens with symmetric boundary conditions were of dimensions 3200/570/150 mm. The solid slab and one bubbled slab are deemed references. Each of the other slabs was exposed to; (1) service charge, then unloaded (2) external prestressing and (3) loading to collapse under two line load. The external strengthening was applied using prestressed wire with four approaches, wh
... Show MoreThe aim of the present work, was measuring of uranium concentrations in 25 soil samples from five locations of Al-Kut city. The samples taken from different depths ranged from soil surface to 60cm step 15 cm, for this measurement of uranium concentrations .The most widely used technique SSNTDs was chosen to be the measurement technique. Results showed that the higher concentrations were in Hai Al- Kafaat which recorded 1.49 ± 0.054 ppm . The uranium content in soil samples were less than permissible limit of UNSCEAR(11.7ppm).
KE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
The cytotoxicity of different concentrations of purified methionine γ- lyase from Pseudomonas putida on cancer cell lines (RD, AMN3 and AMGM) at 96 hr was studied. The bacterial enzyme with concentration 1000µg/ml was revealed highly cytotoxicity against cancer cell lines in comparison with other concentrations whereas slight cytotoxicity was observed on normal cell (REF).
In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
Zinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show More