Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy theory combining CPM computations, time-cost trade off analysis and resource constraint. MATLAB software has been adopted to perform ranking process, for each case, that
facilitates obtaining the optimum solution. This research infers that it is possible to perform time-cost trade off analysis with resource restriction simultaneously, which ensures achieving scheduling optimum solution reducing the effort and the time when performing these techniques in succession using traditional methods.
The adsorption of Cr (VI) from aqueous solution by spent tea leaves (STL) was studied at different initial Cr (VI) concentrations, adsorbent dose, pH and contact time under batch isotherm experiments The adsorption experiments were carried out at 30°C and the effects of the four parameters on chromium uptake to establish a mathematical model description percentage removal of Cr (VI). The
analysis results showed that the experimental data were adequately fitted to second order polynomial model with correlation coefficients for this model was (R2 = 0.9891). The optimum operating parameters of initial Cr (VI) concentrations, adsorbent dose, pH and contact time were 50 mg/l, 0.7625 g, 3 and 100 min, respectively. At these conditions, th
Sewer network is one of the important utilities in modern cities which discharge the sewage from all facilities. The increase of population numbers consequently leads to the increase in water consumption; hence waste water generation. Sewer networks work is very expensive and need to be designed accurately. Thus construction effective sewer network system with minimum cost is very necessary to handle waste water generation.
In this study trunk mains networks design was applied which connect the pump stations together by underground pipes for too long distances. They usually have large diameters with varying depths which consequently need excavations and gathering from pump stations and transport the sewage
... Show MoreThis paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreDemocracy in any country is measured by the cultural, social and economic level reached by women in it in general and women with disabilities in particular, and the extent of their participation in political life and political decision-making. As a result of the patriarchal power that societies have known, including Iraq, history has witnessed multiple types and forms of discrimination against women, which differed from one country to another, this matter has pushed women and since the beginning of the last century the issue of women's rights has been raised at the global, regional and national levels, through holding international conferences and agreements In order to empower women in all social, economic and political fields.
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.