In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased at flow rates
(21.67, 12.5 and 6 ml/min) and initial dye concentration (80, 40, 20 and 10 mg/l) were decreased and bed depth was increased (5, 10, 15 and 20 cm). The adsorption data were fitted to the fixed-bed adsorption mathematical models Thomas and Yoon- Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with correlation coefficient, R2≥ 0.944. Average relative error ARE% was applied to examine the theoretical and experimental results.
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
This new azo dye 3-((2-(1H-indol-3-yl) ethyl) diazenyl) quinoline-2-ol was subsequently used to prepare a series of complexes with the metal ions of Cr+3, Cu+2, VO+2, Mn+2and Mo+6. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a bidantate, and that the complexes gave octahedral, excepting for VO+2 square pyramid was given, that all complexes are non-electrolytes. The effectiveness of mention the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard s
... Show MoreAntibacterial activity of CNSs against Staphylococcus aureus and Escherichia coli was estimated. Higher inhibition zone of 18 mm and 20 mm were observed against S. aureus and E.coli, respectively, at a concentration of 2 mg/ml of carbon nanosphere after 24 hrs of incubation at 37 ºC. In vitro cytotoxicity experiment was performed on two parasite strains of Leishmania donovani and Leishmania tropica by using MTT assay. L. donovani revealed more sensitiv to the CNSs than L. tropica. An intermediate level of cytotoxicity of 51.31 % was observed when 2.4 mg/ml of CNSs was incubated with L. donovani, while weak cytotoxicity of 37.20 % was shown when the
... Show MoreThe aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show MoreThe esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show MoreGroundwater modelling is particularly challenging in arid regions where limited water recharge is available. A fault zone will add a significant challenge to the modelling process. The Western Desert in Iraq has been chosen to implement the modelling concept and calculate the model sensitivity to the changes in aquifer hydraulic properties and calibration by researching 102 observations and irrigation wells. MODFLOW-NWT, which is a Newtonian formulation for MODFLOW-2005 approaches, have been used in this study. Further, the simulation run has been implemented using the Upstream-Weighting package (UPW) to treat the dry cells. The results show sensitivity to the change of the Kx value for the major groundwater discharge flow. Only abo
... Show MoreResource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in
... Show More