Preferred Language
Articles
/
joe-2549
New Approach in Detection MAC Spoofing in a WiFi LAN
...Show More Authors

Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the most effective features of the existing detection systems are extracted, modified and combined together to develop more powerful detection system called Sequence Number with Rate and Signal Strength detection method (SN-R-SS).

SN-R-SS consists from three phases. First phase is Window Sequence Numbers; to detect suspicious spoofed frames in the network. Second phase is Transmission Rate Analysis; to reduce the amount of the suspicious spoofed frames that are generated from the first phase. Finally, the third phase is Received Signal Strength; this phase is decisive phase because it decides whether the suspicious
spoofed frames are spoofed or not. Commview for WiFi network monitor and analyzer is used to capturing frames from the radio channals. Matlab software has been used to implement various computational and mathematical relations in SN-R-SS. This detection method does not work in a real time because it needs a lot of computation.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Next Generation Information Technology
Face detection and the effect of contrast and brightness
...Show More Authors

We propose a system to detect human faces in color images type BMP by using two methods RGB and YCbCr to determine which is the best one to be used, also determine the effect of applying Low pass filter, Contrast and Brightness on the image. In face detection we try to find the forehead from the binary image by scanning of the image that starts in the middle of the image then precedes by finding the continuous white pixel after continuous black pixel and the maximum width of the white pixel by scanning left and right vertically(sampled w) if the new width is half the previous one the scanning stops.

Scopus (1)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Chemtech Research
Biological Assessment, Heamatological Study, and Environmental Detection of Eugenol
...Show More Authors

Eugenol is found in essential oils of many plants. It belongs to a class of naturally occurring phenolic monoterpenoids, chemically it is an allyl chain-substituted guaiacol. A study was conducted on the compound of Eugenol, which included different studies. The first study was the determination of eugenol in body fluid, which includes serum, saliva and urine has been found the highest concentration was in urine then serum and saliva. The second study was the hematological study. Complete blood count was accomplished on the volunteers alredy administrated with eugenol contained mouthwash the analysis was accomplished before and after the mouth wash use. The result observed a slightly negative results and was not that significant, wh

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Wed Apr 28 2021
Journal Name
2021 1st Babylon International Conference On Information Technology And Science (bicits)
Enhanced Twitter Community Detection using Node Content and Attributes
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials & Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Annals Of Tropical Medicine And Public Health
Isolation and identification of fungi from fish feedstuff of cyprinus carpio and detection of aflatoxin b1 and ochratoxin a using ELISA technique
...Show More Authors

This study was conducted at the College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad. The aim of this study was to isolate and diagnose fungi from fish feedstuff samples, and also detection of aflatoxin B1 and ochratoxin A in fish muscles and feedstuffs. Randomly, the samples were collected from some fish farms from Baghdad, Babil, Wasit, Anbar, and Salah al-Din provinces. This study included the collection of 35 feedstuff samples and 70 fish muscle samples, and each of the two fish samples fed on one sample of the feedstuff. The results showed the presence of several genera of different fungi including Aspergillus spp, Mucor spp., Penicillium spp., Yeast spp., Fusarium spp., Rhizopus spp., Scopiolariopsis spp., Ep

... Show More
View Publication
Crossref (1)
Crossref