Preferred Language
Articles
/
joe-2549
New Approach in Detection MAC Spoofing in a WiFi LAN
...Show More Authors

Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points
and masquerading paths that penetrate the up-to-date existing detection systems. Then the most effective features of the existing detection systems are extracted, modified and combined together to develop more powerful detection system called Sequence Number with Rate and Signal Strength detection method (SN-R-SS).

SN-R-SS consists from three phases. First phase is Window Sequence Numbers; to detect suspicious spoofed frames in the network. Second phase is Transmission Rate Analysis; to reduce the amount of the suspicious spoofed frames that are generated from the first phase. Finally, the third phase is Received Signal Strength; this phase is decisive phase because it decides whether the suspicious
spoofed frames are spoofed or not. Commview for WiFi network monitor and analyzer is used to capturing frames from the radio channals. Matlab software has been used to implement various computational and mathematical relations in SN-R-SS. This detection method does not work in a real time because it needs a lot of computation.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
SMS Spam Detection Based on Fuzzy Rules and Binary Particle Swarm Optimization
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (22)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (31)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (9)
Scopus Crossref
Publication Date
Wed Jan 30 2013
Journal Name
Al-kindy College Medical Journal
Paraphilia in Iraq, a general sketch A study in the sex clinic, at Al-Rashad teaching mental hospital
...Show More Authors

Background; paraphilias were studied in the sex
clinic, at Al-Rashad teaching mental hospital, in the
years 2009-2010, a subject never touched before in the
field of psychiatry in Iraq.
Aims of the study :
1-to identify the prevalence of types and number of
paraphilias in those patients.
2-to study the relationship of paraphilias with
sociodemographic factors of the patients.
Patients and methods; using the diagnostic criteria of
DSM IV TR, 52 patients from the outpatient sex clinic
at Al-Rashad mental hospital, collected and studied (41
males and 11 females).
Results; the ratio of men to women was 3.7 : 1, the
majority of our sample was in the age range of 21-30
years (36.35%), with a limited

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
The impact of a practical treatment program in enabling victims of bullying in a sample of 6th graders
...Show More Authors

This study was aimed to explore the impact of a practical program on supporting and reducing
symptoms of school bulling victims in a sample of student in the sixth grade. The study sample consisted of (18)
students that have been chosen from two schools (Al-Abass and Alataa’) it was an intended sample, because
there were enough student with high scores in bulling victims diagnostics test, the sample was divided into two
groups: the control group of (9) student from (Alataa’) school, and the experimental group consisted of (9)
student from Alabass) school keeping in mind to keep the two groups equivalent in maintaining equal controls.
The researcher applied the practical program which is based on cognitive behavioral

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 02 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Role of Artificial Intelligence in achieving Ambidextrous Performance A case study in a sample of private banks
...Show More Authors

The research aims to shed light on the role of artificial intelligence in achieving Ambidexterity performance, as banks work to take advantage of modern technologies, artificial intelligence is an innovation that is expected to have a long-term impact, as well as banks can improve the quality of their services and analyze data to ensure that customers' future needs are understood. . The Bank of Baghdad and the Middle East Bank were chosen as a community for the study because they had a role in the economic development of the country as well as their active role in the banking market. A sample of department managers was highlighted in collecting data and extracting results based on the checklist, which is the main tool for the stu

... Show More
View Publication Preview PDF