The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load could increase and decrease depending on the boundary conditions, thickness ratio, and, the aspect ratio and number of stiffeners of the plate.
Mechanical Engineering Department/ University of Technology- Baghdad.
Confinement layer is considered as the most important parameter during the laser shock peening (LSP) treatment. In this paper, its effect on the surface treatment effectivity of composite materials was investigated. The composite used in this research was fabricated using hand lay-up as a manufacturing process. The matrix material was built from unsaturated polyester resin and reinforced with 2.5% volume fraction of micro particles of aluminum powder. Fatigue test was conducted at room temperature with constant amplitude stress and a stress ratio of R =-1, before and after LSP treatment. LSP was applied with and without confinement layer at the same level
... Show MoreTo fabricate an inexpensive surface coating with excellent mechanical properties with good water resistance and thermal diffusion, white eggshell fibers with particle size (~1micrometer) has been added by different weight percentages (1,2,3,4,5,6,7 and 8 %) to Unsaturated Polyester.
The weight ratio (4%) of eggshell powder is a good ratio to be added to polyester to improve its mechanical properties, such as hardness, impact strength, and wear resistance. The hardness was improved by (3.75%); impact strength has the same value as polyester, flexural strength by (8.43%) and high improvement in wear resistance (74.4%), as well as to get further improvements in mechanical properties of polyester, the eggshell powder was added
... Show MoreBackground: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MoreThe fatigue is one of the major reasons for fracture of materials. Aluminum 7204 AA alloy with various heat treatments and (2.0) wt % of SiC nanoparticles were prepared by stir-casting method under rotating bending loading with ratio of stress (R= -1). The composite was strengthened by SiC particles size of) 10 (nanometre. The fatigue strength and life were obtained experimentally by the family of S-N curves for different heat treatments. The endurance limits (107cycles) for 7204 AA/ 2.0wt% SiC nano-composite fatigue strength as related to untreated nanocomposite was enhanced by 72 and 78.5% for T4 and T6, respectively.The improvement 
... Show MoreIn this work, an organic semiconductor of copper (II) phthalocyanine (CuPc) and Tris(8-hydroxyquinoline) aluminum (III) (Alq3) were entirely dissolved in chloroform with various mixing ratios (1:0,0.75:0.25,0.5:0.5,0.25:0.75,0:1) (w/w) to make thin films. They were deposited on a pre-cleaned glass using a spin-coating process and heat-treated at 473 K in vacuum. X-ray diffraction and a scanning electron microscope were used to investigate the films. XRD analysis reveals that CuPc/Alq3 composites have a polymorphic structure, with the exception of Alq3's amorphous structure, the crystallinity increases after annealing, but decreases when the concentration of Alq3 is increased. The quantity of (CuPc) rod-like structure and (Alq3) grain-lik
... Show MoreInterest has largely centered on the use of plant fibers to reinforce plastics, because these fibers are abundant and cheap. Carrot fibers (Curran) have been extracted from carrot, left over from carrot juice manufacture. The fibers of two sizes fine (50<µm) and coarse (100-150 µm) have been mixed with epoxy in four levels of loading (10, 20, 30, 40 wt %) respectively. Impact test, shore d hardness test and three point bending test of epoxy and carrot fiber-epoxy composites samples have been determined. The impact strength values of samples prepared with fine and coarse fibers increased as compared with pure epoxy sample. Hardness values increased, and the Young’s modulus values decreased with fiber content of both sizes.
The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreCarbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG). The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al