In this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperature difference of air between inlet and outlet sections observed on (0.018 kg/s) air mass flow rate were exceeded (17°C) and the maximum outlet temperature that got was exceeded (34°C) for the three months (December, January and February) of experiments. Average efficiency was ranged from 53% to 65%. In the case of storage and then operating, the maximum outlet air temperature was ranged from (27°C) up to (31°C) then
decreased with spend of energy to reach (13°C) to (18°C) and the maximum storage energy was (165.14 W) for the porosity of (0.29) , height of (20 cm) and (0.01 kg/s) mass flow rate. The results also, showed that the solar air collector supplied a solar heating fraction (SHF) with an average of (0.65) for a meeting room (3 * 4 * 7 m) located in Baghdad as a case study.
The antimicrobial activity of two naphthoquinone semicarbazone derivatives (Two newly synthesized compounds) have been studied by using tube — diluation and disc plate technique. The effect of those derivatives upon pathogenic microorganism iso-lated from specimen(urine iwounds,stool, swabs, throat ....etc) have been studied also in comparison with the antibiotics (amikacin,ampicillin, carbencillin, cephalothin, cefoxitin,clindamycin ,erythromycin,gentamycin,penicillin,tetracylin and tri-methoprim. It was shown that derivative(1) had more effective against micro organ-ism than derivative(11).
In this study multi objective optimization is utilized to optimize a turning operation to reveal the appropriate level of process features. The goal of this work is to evaluate the optimal combination of cutting parameters like feed, spindle speed, inclination angle and workpiece material to have a best surface quality Taguchi technique L9 mixed orthogonal array, has been adopted to optimize the roughness of surface. Three rods of length around (200 mm) for the three metals are used for this work. Each rod is divided into three parts with 50 mm length. For brass the optimum parametric mix for minimum Ra is A1, B1 and C3, i.e., at tool inclination angle (5), feedrate of 0.01, spindle speed of 120
... Show MoreIn this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreThis work aims to analyze a three-dimensional discrete-time biological system, a prey-predator model with a constant harvesting amount. The stage structure lies in the predator species. This analysis is done by finding all possible equilibria and investigating their stability. In order to get an optimal harvesting strategy, we suppose that harvesting is to be a non-constant rate. Finally, numerical simulations are given to confirm the outcome of mathematical analysis.
Wellbore instability is a significant problem faced during drilling operations and causes loss of circulation, caving, stuck pipe, and well kick or blowout. These problems take extra time to treat and increase the Nonproductive Time (NPT). This paper aims to review the factors that influence the stability of wellbores and know the methods that have been reached to reduce them. Based on a current survey, the factors that affect the stability of the wellbore are far-field stress, rock mechanical properties, natural fractures, pore pressure, wellbore trajectory, drilling fluid chemicals, mobile formations, naturally over-pressured shale collapse, mud weight, temperature, and time. Also, the most suitable ways to reduce well
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show MoreThis research aims to modify the components of stainless steel alloy by the method of surface engineering through the single diffusion coating technique in order to obtain new alloys with high efficiency in resisting harsh environmental conditions. Steam a mixture of sodium chloride ( ) and sodium sulfate ( ) at a temperature of 900 and then compare it with the base alloy. The results showed that the alloys produced in this way are very efficient. The results showed that the aluminum coating showed high efficiency in resisting oxidation and provided better protection for a longer time compared to the uncoated alloy due to the oxide crust layer formed with high adhesion as well as the aluminum-rich phases, whether the phase
... Show More