In this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperature difference of air between inlet and outlet sections observed on (0.018 kg/s) air mass flow rate were exceeded (17°C) and the maximum outlet temperature that got was exceeded (34°C) for the three months (December, January and February) of experiments. Average efficiency was ranged from 53% to 65%. In the case of storage and then operating, the maximum outlet air temperature was ranged from (27°C) up to (31°C) then
decreased with spend of energy to reach (13°C) to (18°C) and the maximum storage energy was (165.14 W) for the porosity of (0.29) , height of (20 cm) and (0.01 kg/s) mass flow rate. The results also, showed that the solar air collector supplied a solar heating fraction (SHF) with an average of (0.65) for a meeting room (3 * 4 * 7 m) located in Baghdad as a case study.
Introduction Periodontal diseases are ranked among the most common health problems affecting mankind. These conditions are initiated by bacterial biofilm, which is further modulated by several risk factors. Objectives To investigate the association of different risk factors with periodontal...
The purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreThe research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.
This study presents a linguistic analysis of how Russian and American mainstream media and official statements deployed speech acts of accusation during the 2022 Russian invasion of Ukraine. Using Speech Act Theory (Austin, 1962; Searle, 1976) as the framework. The study analyzes 50 texts of English-language official statements and media headlines from both sides. In this research utterances are categorized into assertives, expressives, directives, commissives, and declarations, and analyzes their pragmatic force in shaping narratives. The analysis reveals contrasts in tone and rhetorical strategy: U.S. officials and media overwhelmingly use assertive accusations and expressive condemnations to morally indict Russia, while Russian counterpa
... Show MoreThe involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in the epithelial surfaces of the oral and nasal cavities; however, a complete understanding of the expression patterns in deep oral and maxillofacial tissues is still lacking.
The immunohistochemical expression of ACE2 was analyzed in 95 specimens from maxillofacial tissues and 10 specimens o
Many studies of the relationship between COVID-19 and different factors have been conducted since the beginning of the corona pandemic. The relationship between COVID-19 and different biomarkers including ABO blood groups, D-dimer, Ferritin and CRP, was examined. Six hundred (600) patients, were included in this trial among them, 324 (56%) females and the rest 276 (46%) were males. The frequencies of blood types A, B, AB, and O were 25.33, 38.00, 31.33, and 5.33%, respectively, in the case group. Association analysis between the ABO blood group and D-dimer, Ferritin and CRP of COVID-19 patients indicated that there was a statistically significant difference for Ferritin (P≤0.01), but no-significant differences for both D-dimer and CRP.
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.