With the increase in industry and industrial products, quantities of waste have increased worldwide, especially plastic waste, as plastic pollution is considered one of the wastes of the modern era that threatens the environment and living organisms. On this basis, a solution must be found to use this waste and recycle it safely so that it does not threaten the environment. Therefore, this research used plastic waste as an improvement material for clay soil. In this research, two types of tests were conducted, the first of which was a laboratory test, where the undrained shear strength (cohesion), compression index (Cc), and swelling index (Cr) of the improved and unimproved soils were calculated (plastic was added in proportions (0.5, 1, 1.5, 2)%. The second part of the examination was done through physical modeling, where 2% of plastic was used, considered the optimal percentage in this research, and the calculation of the carrying capacity-settlement relationship for both the improved and unimproved soils. Using this percentage of plastic showed an improvement in the relationship between the bearing capacities of soil vs. subsidence, as an increase in the amount of stress was observed from 405 KPa to 459 kPa at 10% of subsidence.
A field experiment is conducted to study the effect of different levels of peat (0, 25, 50, 75, and 100 Mg ha-1 to uncropped and cropped soil to wheat. Soil samples are taken in different period of time (0, 3, 30, 60, 90, 120, and 180 days after cultivation to determine (NaHCO3-Exteractable P at 3 different depths (0-10, 10-20, and 20-30 cm). Field Experiment is conducted in a randomized complete block design (RCBD) with four replicates. Wheat, Al-Rasheed variety, is cultivated as a testing crop. The entire field is equally dived in two divisions. One of the two divisions is cultivated to wheat and the second is left uncropped. The effect of five levels of peat namely 0, 25, 50, 75, 100 Mg ha-1 is investigated. Soils are fully analyzed
... Show MoreIn this research measuring the radioactivity of the soil batteries plant in Waziriya in Baghdad city ,where the collection of 60 samples from different locations and depth between(10cm-50cm)by using γ-ray spectrometer technique and sodium iodide detector to measure the activityof radiation of elements radiation ,where the results showed that there are aradioctivety of natural isotopes refers to the chains of U-238and Th-232and K-40and Cs-137the results show that ahigh concentration of Pb-214,Pb-212 within the permissible internationally values ,also the valuable parameters of radium and the external and internal hazard and the dose effect where its found to be permissible internationally.
In this paper, the penetration of the stone column was investigated in order to get the minimum length of the stone column above which the increase in length has little advantage. The effect of using different materials in column are also studied. The material used is granular of different angle of internal friction (). The results of the investigation indicated that the effect of stone column remains constant when the ratio of the thickness of the soft clay layer to the stone column’s diameter is more than 15. The results also indicated that a pronounced effect is obtained when the angle of internal friction of the stone column material is increased.
Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreDirect contact membrane distillation is an effective method for production of fresh water from saline water. In this study two samples were used as feed solutions; the first one was RO waste from Al-Hilla Coca-Cola Factory (TDS= 2382 mg/l) and the other was Haji Ali drainage water (TDS= 4127 mg/l). Polytetrafluoroethylene (PTFE) hydrophobic membrane supported with polypropylene (PP) was used as flat sheet form with plate and frame cell. Results proved that membrane distillation is an effective technique to produce fresh water with high quality from brine with low salinity content. With membrane area of 8x8 cm2, the volume of treated water decreased from 34.97 ml at first half hour to 33.02 ml after 180 min of
... Show More