Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity criterion; otherwise the block is segmented by the quadtree. Then, supervised classification is carried out by means the Fractal Dimension. For each block in the image, the Fractal Dimension was determined and used to classify the target part of image. The supervised classification process delivered five deferent classes were clearly appeared in the target part of image. The supervised classification produced about 97% classification score, which ensures that the adopted fractal feature was able to recognize different classes found in the image with high accuracy level.
The need for detection and investigation of the causes of pollution of the marshes and submit a statistical study evaluated accurately and submitted to the competent authorities and to achieve this goal was used to analyze the factorial analysis and then obtained the results from this analysis from a sample selected from marsh water pollutants which they were: (Electrical Conductivity: EC, Power of Hydrogen: PH, Temperature: T, Turbidity: TU, Total Dissolved Solids: TDS, Dissolved Oxygen: DO). The size of sample (44) sites has been withdrawn and examined in the laboratories of the Iraqi Ministry of Environment. By illustrating SPSS program) the results had been obtained. The most important recommendation was to increase the pumping of addit
... Show MoreOryza sativa japonica (ofada rice) is largely grown in Aramoko, Abakaliki and Ofada are communities and consumed by both the poor and rich in Nigeria. A total of twenty ofada rice farmlands were identified in each study area and rice samples were randomly collected, thoroughly mixed to make a representative sample from each farmland. Soil samples were collected in each farm to a depth of 5-15cm from at least eight different points and thoroughly mixed together to form a representative sample. The samples were thereafter taken to the laboratory for preparation and spectroscopic analysis. A well-calibrated NaI(Tl) gamma-ray detector was used in spectrometric analysis of the samples and descriptive statistics was used to analyze th
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreBackground: e cerebellum is divided into two hemispheres and contains a narrow midline zone called thevermis. A set of large folds are conventionally used to divide the overall structure into ten smaller "lobules". evermis receives fibres from the trunk and proximal portions of limbs, But the question is that does the cerebellum have the same measurementvalues in males and females of the same age?Material and method: e present study used 80 sectional brain MRI images (40: males, 40: females); 35-50 years old as indices of size for thevermian structures of the Cerebellum. is middle age group was taken because as known generally it could be neither an age of growth as inthe young nor of atrophy as in old individuals. e aim rega
... Show MoreThe twelve samples of agricultural soils from four regions in Al-Najaf governorate with sampling plant with soil. Physical properties of the soil where studied, such as electrical conductivity ranged from (136.33-1070.00)μS/cm-3, and moisture which ranged between the values (0.39-36.48)%. The chemical analysis of the soil have included the proportion of calcium carbonate the ratio between (44.00-48.00%) has been observed increasing amounts of calcium carbonate in surface models. The pH where results indicate that pH values were close to study models ranged between (6.88-7.42) these values generally within the normal range for the measured pH values of the Iraqi soil. The amount of gypsum ranged betwe
... Show MoreBackground: The risk of antibiotics resistance (AR) increases due to excessive of antibiotics either by health care provider or by the patients.
Objective: The assessment of the self-medication Practice of over the counter drugs and other prescription drugs and its associated risk factor.
Subjects and Methods: Study design: A descriptive study was conducted from “20th December 2019 to 08th January 2021”. A pre validated and structured questionnaire in English and Urdu language was created to avoid language barrier including personal detail, reasons and source and knowledge about over the counter drugs and Antibiotics. Sample of the study was randomly selected.
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show More