Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity criterion; otherwise the block is segmented by the quadtree. Then, supervised classification is carried out by means the Fractal Dimension. For each block in the image, the Fractal Dimension was determined and used to classify the target part of image. The supervised classification process delivered five deferent classes were clearly appeared in the target part of image. The supervised classification produced about 97% classification score, which ensures that the adopted fractal feature was able to recognize different classes found in the image with high accuracy level.
A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThe study aims to investigate the degree of student teachers at Sultan Qaboos University acquired skills in teaching Arabic via a virtual micro-teaching lab, as well as to reveal the difficulties they faced and their development proposals. To do this, the researchers developed a questionnaire divided into four dimensions: planning, implementation, evaluation, and
ethical values for the teaching profession, in addition to two open-ended questions to identify difficulties and suggestions. It was administered to (30) student teachers. The results revealed that the average degree of student-teacher acquisition of skills was high in its four dimensions. It ranged between (39.2) to (82.2), while the overall average was (56.2).
... Show MoreThe present research aims to design an electronic system based on cloud computing to develop electronic tasks for students of the University of Mosul. Achieving this goal required designing an electronic system that includes all theoretical information, applied procedures, instructions, orders for computer programs, and identifying its effectiveness in developing Electronic tasks for students of the University of Mosul. Accordingly, the researchers formulated three hypotheses related to the cognitive and performance aspects of the electronic tasks. To verify the research hypotheses, a sample of (91) students is intentionally chosen from the research community, represented by the students of the college of education for humanities and col
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreFunctionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w
... Show MoreModeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show More