The performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for performance evaluation. A 100 % ventilation mode and 3 recirculation modes, 30 % , 60 % and 100 % recirculation of room air. The concept of variable air volume was employed as a control strategy over the day, by changing the supply airflow rate to match the variation in the cooling load.
The results showed that the reduction in moisture content at regeneration temperatures from 55 o C to 75 o C lead to adequate removal of the high latent load in the meeting-hall. Also, the 30 % recirculation of return air resulted in comfortable indoor conditions satisfying the ventilation requirements for most periods of system operation. In addition, the COP of the system was high compared with the conventional vapor compression system. It varied from 1 to 13, when considering solar energy used to regenerate the
desiccant material as free energy.
The CO2-Assisted Gravity Drainage process (GAGD) has been introduced to become one of the mostinfluential process to enhance oil recovery (EOR) methods in both secondary and tertiary recovery through immiscibleand miscible mode. Its advantages came from the ability of this process to provide gravity-stable oil displacement forenhancing oil recovery. Vertical injectors for CO2 gas have been placed at the crest of the pay zone to form a gas capwhich drain the oil towards the horizontal producing oil wells located above the oil-water-contact. The advantage ofhorizontal well is to provide big drainage area and small pressure drawdown due to the long penetration. Manysimulation and physical models of CO2-AGD process have been implemented
... Show MoreFourty -tow Libyan patients with hydatidosis, which were
referred to by the physician for the detection of hydatid cyst by X - rays, Ultrasound and CT-Scan. The infection rate in females and males was(69% )and (31% )respectively .The highest rate 69% was in the liver, followed by the lung( 23.8%), the brain (4.8%) and kidney
(2.4%).
A total of 42 serum samples were gathered from Libyan patients infected with hydatidosis, 33 serum samples from patients cases with other parasitic diseases than hydatidosis and 30 serum samples from healthy normal controls and were tested by Dot-ELIZA utilizing antigen B from sheep hy
... Show MoreThis work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show MoreThe absorption spectrum for three types of metal ions in different concentrations has been studying experimentally and theoretically. The examination model is by Gaius model in order to find the best fitting curve and the equation controlled with this behavior. The three metal ions are (Copper chloride Cu+2, Iron chloride Fe+3, and Cobalt chloride Co+2) with different concentrations (10-4, 10-5, 10-6, 10-7) gm/m3. The spectroscopic study included UV-visible and fluorescence spectrum for all different concentrations sample. The results refer to several peaks that appear from the absorption spectrum in the high concentration of all metal ions solution.
... Show MoreThe power factors and electronic thermal conductivities in bismuth telluride (Bi2Te3), lead-telluride (PbTe), and gallium arsenide (GaAs) at room temperature (300K) quantum wires and quantum wells are theoretically investigated. Our formalism rigorously takes into account modification of these power factors and electronic thermal conductivities in free-surface wires and wells due to spatial confinement. From our numerical results, we predict a significant increase of the power factor in quantum wires with diameter w=20 Ã…. The increase is always stronger in quantum wires than in quantum wells of the corresponding dimensions. An unconfined phonon distribution assumed based on the bulk lattice thermal conductivity is then employed
... Show MorePraise be to Allah, Lord of the Worlds, and peace and blessings be upon our master Muhammad and his good and pure family. At the end of this research, we summarize some of the most important findings of our research, namely:
Raising a child properly from childhood leads to integrity in the life of the individual society, and if the young raised bad education, this education will affect itself and society negatively, so on parents and government institutions in any country to take care of children, and Islamic countries Specifically to give the child great attention; he is raised on the Koran and watered from its fountains, and armed with a weapon of morality from a young age, and to understand the biography of Mustafa (peace be upon h
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.