Excessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values > 0.99 suggesting favorable conditions of the process. Furthermore, it was found that the co-existing anions had no significant effect on fluoride removal. Ion exchange and fluoride precipitation are the modes of fluoride removal.
Modified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreIn the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM), blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depe
... Show MoreThe Falluja residents had resorted to the underground water as an alternative to the surface waters of the Euphrates river passing near the city, through digging wells inside gardens of Mosques in the city during spring 2005. The present study aims to indicate the quality of these waters and demonstrates the extent of their suitability for drinking . For this purpose, 21 randomly distributed wells were chosen during August 2005. The water characters were measured ; the average values of 21 wells were as follows : Water temp .(22.6C ْ ◌ ) , EC (4,11 msem .\cm ), pH (7.15 ) and concentration of cations : Na (439mg\l) ;K (275mg\l) ; Li (0,28mg\l), Ba (15.2 mg\l) and (133mg\l). These character is ties were compared with the
... Show MoreIn this study, we fabricated nanofiltration membranes using the electrospinning technique, employing pure PAN and a mixed matrix of PAN/HPMC. The PAN nanofibrous membranes with a concentration of 13wt% were prepared and blended with different concentrations of HPMC in the solvent N, N-Dimethylformamide (DMF). We conducted a comprehensive analysis of these membranes' surface morphology, chemical composition, wettability, and porosity and compared the results. The findings indicated that the inclusion of HPMC in the PAN membranes led to a reduction in surface porosity and fiber size. The contact angle decreased, indicating increased surface hydrophilicity, which can enhance flux and reduce fouling tendencies. Subsequently, we evaluated the e
... Show MoreBackground: Osteoporosis is an extra-articular complication of rheumatoid arthritis that results in increased risk of fractures and associated morbidity, mortality, and healthcare costs. Objective: To evaluate changes in bone mineral density in a sample of rheumatoid arthritis (RA) patients on biological (anti tumor necrosis factor (TNF) alpha) and non-biological agent disease modifying antirheumatic drugs (DMARDs). Patients and Methods: A cross sectional study enrolled 60 RA patients diagnosed by rheumatologist according to the 2010 American College of Rheumatology/European League Against Rheumatism (2010 ACR/EULAR) classification criteria for RA. Thirty patient on biological agent (anti TNF alpha) and 30 patient on non-biological agent (D
... Show MoreIn developing countries, conventional physico-chemical methods are commonly used for removing contaminants. These methods are not efficient and very costly. However, new in site strategy with high treatment efficiency and low operation cost named constructed wetland (CW) has been set. In this study, Phragmites australis was used with free surface batch system to estimate its ability to remediate total
petroleum hydrocarbons (TPH) and chemical oxygen demand (COD) from Al-Daura refinery wastewater. The system operated in semi-batch, thus, new wastewater was weekly added to the plant for 42 days. The results showed high removal percentages (98%) of TPH and (62.3%) for COD. Additionally, Phragmites australis biomass increased significant
This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreThis study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreThe aim of this study was the isolation and characterization of Klebsiella pneumonia from 160 urine samples of patients hospitalized in children hospital in AL-Ramadi Proveng during October 2006 to May 2008. Also determination of the susceptibility of K. pneumoniae against a number of antibiotics to explain resistance mechanism for these antibiotics by using interpretative reading to avoid using it in treatment. Forty two isolates were detected as K. pneumoniae with resistance to a number of antibiotics . These isolates were tested to determine their sensitivities to a wide number of antibiotics which included β-lactum group and aminoglicosides
... Show More